Large-scale algebraic Riccati equations with high-rank constant terms

被引:11
作者
Yu, Bo [1 ,2 ]
Fan, Hung-Yuan [3 ]
Chu, Eric King-wah [4 ]
机构
[1] Hunan Univ Technol, Sch Sci, Zhuzhou 412000, Peoples R China
[2] Changsha Univ Sci & Technol, Dept Math & Stat, Changsha 410004, Hunan, Peoples R China
[3] Natl Taiwan Normal Univ, Dept Math, Taipei 116, Taiwan
[4] Monash Univ, Sch Math, 9 Rainforest Walk, Melbourne, Vic 3800, Australia
关键词
Algebraic Riccati equation; Feedback gain; High-rank constant term; Large-scale problem; LQR optimal control; ITERATIVE SOLUTIONS; MATRIX EQUATIONS; PARAMETER-ESTIMATION; DOUBLING-ALGORITHM; SYSTEMS;
D O I
10.1016/j.cam.2019.04.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical solution of large-scale algebraic Riccati equations with high-rank constant terms. The solutions are not numerically low-rank, so the previously successful methods based on low-rank representations are not directly applicable. We modify the doubling algorithm, making use of the low-rank in the input matrix B. We also solve the challenging problems in the estimation of residuals and relative errors, convergence control and the output of the modified algorithm. Illustrative numerical examples are presented. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 143
页数:14
相关论文
共 43 条
[1]   An invariant subspace method for large-scale algebraic Riccati equation [J].
Amodei, L. ;
Buchot, J. -M. .
APPLIED NUMERICAL MATHEMATICS, 2010, 60 (11) :1067-1082
[2]  
Antoulas A.C., 2005, ADV DES CONTROL
[3]  
Athan M., 1965, OPTIMAL CONTROL INTR
[4]  
Bansch E., 2011, INT SERIES NUMERICAL, V160, P5, DOI [10.1007/978-3-0348-0133-1, DOI 10.1007/978-3-0348-0133-1]
[5]  
Benner P, 1998, LINEAR ALGEBRA APPL, V276, P19
[6]   Solving large-scale control problems [J].
Benner, P .
IEEE CONTROL SYSTEMS MAGAZINE, 2004, 24 (01) :44-59
[7]  
Benner P., 2005, Dimension reduction of large-scale systems, DOI DOI 10.1007/3-540-27909-1
[8]  
Benner P., 2009, CICADA MIMS WORKSH N
[9]  
Benner P., 2010, DFG PRIORITY PROGRAM, V1253
[10]  
Benner P., 2010, APPL LIN ALG 2010 GA