Proof of the Branner-Hubbard conjecture on Cantor Julia sets

被引:56
作者
Qiu WeiYuan [1 ]
Yin YongCheng [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2009年 / 52卷 / 01期
基金
中国国家自然科学基金;
关键词
Julia set; Branner-Hubbard conjecture; puzzle; tableau; LOCAL CONNECTIVITY; CUBIC POLYNOMIALS; RATIONAL MAPS; ITERATION; DYNAMICS; COMBINATORICS; TOPOLOGY; RIGIDITY; INTERVAL; BOUNDS;
D O I
10.1007/s11425-008-0178-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of a nested sequence of some critical pieces constructed by Kozlovski, Shen, and van Strien, and by using a covering lemma recently proved by Kahn and Lyubich, we prove that a component of the filled-in Julia set of any polynomial is a point if and only if its forward orbit contains no periodic critical components. It follows immediately that the Julia set of a polynomial is a Cantor set if and only if each critical component of the filled-in Julia set is aperiodic. This result was a conjecture raised by Branner and Hubbard in 1992.
引用
收藏
页码:45 / 65
页数:21
相关论文
共 27 条
  • [1] [Anonymous], 1920, Bulletin de la Societemathematique de France, DOI DOI 10.24033/BSMF.1008
  • [2] THE ITERATION OF CUBIC POLYNOMIALS .2. PATTERNS AND PARAPATTERNS
    BRANNER, B
    HUBBARD, JH
    [J]. ACTA MATHEMATICA, 1992, 169 (3-4) : 229 - 325
  • [3] THE ITERATION OF CUBIC POLYNOMIALS .1. THE GLOBAL TOPOLOGY OF PARAMETER SPACE
    BRANNER, B
    HUBBARD, JH
    [J]. ACTA MATHEMATICA, 1988, 160 (3-4) : 143 - 206
  • [4] INVRAIANT SETS UNDER ITERATION OF RATIONAL FUNCTIONS
    BROLIN, H
    [J]. ARKIV FOR MATEMATIK, 1965, 6 (02): : 103 - &
  • [5] Existence of unique SRB-measures is typical for real unicritical polynomial families
    Bruin, Henk
    Shen, Weixiao
    Van Strien, Sebastian
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (03): : 381 - 414
  • [6] On the structure of Fatou domains
    Cui GuiZhen
    Peng WenJuan
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (07): : 1167 - 1186
  • [7] DOUADY A, 1985, ANN SCI ECOLE NORM S, V18, P287
  • [8] Dynamics of polynomials with disconnected Julia sets
    Emerson, ND
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (04) : 801 - 834
  • [9] Fatou P., 1919, Bull. Soc. Math. France, V47, P161, DOI DOI 10.24033/BSMF.998
  • [10] Fatou P., 1920, Bull. Soc. Math. France, V48, P208