Distance between the fractional Brownian motion and the space of adapted Gaussian martingales

被引:0
作者
Mishura, Yuliya [1 ]
Shklyar, Sergiy [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Volodymyrska Str 64, Kiev, Ukraine
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2019年 / 24卷 / 04期
关键词
fractional Brownian motion; Gaussian martingales; convex programming; minimax approximation;
D O I
10.15388/NA.2019.4.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the distance between the fractional Brownian motion defined on the interval [0, 1] and the space of Gaussian martingales adapted to the same filtration. As the distance between stochastic processes, we take the maximum over [0, 1] of mean-square deviances between the values of the processes. The aim is to calculate the function a in the Gaussian martingale representation integral(t)(0) a(s) dW(s) that minimizes this distance. So, we have the minimax problem that is solved by the methods of convex analysis. Since the minimizing function a cannot be either presented analytically or calculated explicitly, we perform discretization of the problem and evaluate the discretized version of the function a numerically.
引用
收藏
页码:639 / 657
页数:19
相关论文
共 18 条
[1]  
Banna O., 2008, THEORY STOCH PROCESS, V14, P1
[2]  
Banna OL, 2010, THEOR PROBAB MATH ST, V83, P12
[3]  
Banna OL, 2014, THEOR PROBAB MATH ST, V90, P13
[4]  
Banna O. L., 2008, VISN MAT MEKH KYIV U, V19, P38
[5]   ON THE CONVERGENCE OF ALTERNATING MINIMIZATION FOR CONVEX PROGRAMMING WITH APPLICATIONS TO ITERATIVELY REWEIGHTED LEAST SQUARES AND DECOMPOSITION SCHEMES [J].
Beck, Amir .
SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (01) :185-209
[6]  
Botkin N., 1994, System Modelling and Optimization, P833
[7]  
Chang C.-I., 2003, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, DOI DOI 10.1007/978-1-4419-9170-6
[8]  
Doroshenko V., 2013, THEORY PROBAB MATH S, V87, P41, DOI [10.1090/S0094-9000-2014-00903-5, DOI 10.1090/S0094-9000-2014-00903-5]
[9]   Fast smallest-enclosing-ball computation in high dimensions [J].
Fischer, K ;
Gärtner, B ;
Kutz, M .
ALGORITHMS - ESA 2003, PROCEEDINGS, 2003, 2832 :630-641
[10]  
Mishura YS, 2008, THEOR PROBAB MATH ST, V79, P105