Stability of abstract thermo-elastic semigroups

被引:3
作者
Ben Bassi, E. M. Ait [1 ]
Ammari, K. [2 ]
Boulite, S. [3 ]
Maniar, L. [1 ]
机构
[1] Univ Cadi Ayyad, Fac Sci Semlalia, LMDP, UMMISCO IRD UPMC, Marrakech 40000, Morocco
[2] Univ Monastir, Fac Sci Monastir, Dept Math, UR Anal & Control Pde,UR 13ES64, Monastir 5019, Tunisia
[3] Univ Hassan 2, Fac Sci Ain Chock, Dept Math, Casablanca, Morocco
关键词
Abstract thermo-elastic system; Cattaneo law; Fourier law; Exponential stability; Observability inequality; Polynomial stability; EVOLUTION-EQUATIONS; WAVE-EQUATION; DECAY-RATES; DELAY TERM; STABILIZATION; SYSTEM;
D O I
10.1016/j.jmaa.2015.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we characterize the stabilization for some thermo-elastic type system with Cattaneo law and we prove that the exponential or polynomial stability of this system implies a polynomial stability of the corresponding thermoelastic system with the Fourier law. The proof of the main results uses, respectively, the methodology introduced by Haraux in [11] and generalized by Ammari and Tucsnak in [8], where the exponential stability for the closed loop problem is reduced to an observability estimate for the corresponding uncontrolled system, and a characterization of the polynomial stability for a Co-semigroup, in a Hilbert space, by a polynomial estimation of the resolvent of its generator obtained by Borichev and Tomilov [9]. Illustrating examples are given. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1021 / 1035
页数:15
相关论文
共 20 条
[1]  
Ammar-Khodja F., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P577, DOI 10.1051/cocv:1999123
[2]   Decay rates of the plate equations [J].
Ammari, K ;
Khenissi, M .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (14) :1647-1658
[3]   Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force [J].
Ammari, K ;
Tucsnak, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (04) :1160-1181
[4]   Stabilization of second order evolution equations by a class of unbounded feedbacks [J].
Ammari, K ;
Tucsnak, M .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2001, 6 (14) :361-386
[5]  
[Anonymous], 1989, Portugal. Math
[6]  
[Anonymous], 2015, LECT NOTES MATH
[7]   Compact decoupling for thermoelasticity in irregular domains [J].
Ben Hassi, E. Ait ;
Bouslous, H. ;
Maniar, L. .
ASYMPTOTIC ANALYSIS, 2008, 58 (1-2) :47-56
[8]   Exponential energy decay of some coupled second order systems [J].
Benhassi, E. M. Ait ;
Ammari, K. ;
Boulite, S. ;
Maniar, L. .
SEMIGROUP FORUM, 2013, 86 (02) :362-382
[9]   Feedback stabilization of a class of evolution equations with delay [J].
Benhassi, E. M. Ait ;
Ammari, K. ;
Boulite, S. ;
Maniar, L. .
JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (01) :103-121
[10]   Optimal polynomial decay of functions and operator semigroups [J].
Borichev, Alexander ;
Tomilov, Yuri .
MATHEMATISCHE ANNALEN, 2010, 347 (02) :455-478