Timing of Neuropeptide Coupling Determines Synchrony and Entrainment in the Mammalian Circadian Clock

被引:37
作者
Ananthasubramaniam, Bharath [1 ]
Herzog, Erik D. [2 ]
Herzel, Hanspeter [1 ]
机构
[1] Charite & Humboldt Univ Berlin, Inst Theoret Biol, Berlin, Germany
[2] Washington Univ, Dept Biol, St Louis, MO 63130 USA
关键词
VASOACTIVE INTESTINAL POLYPEPTIDE; SUPRACHIASMATIC NUCLEUS; INTERCELLULAR SYNCHRONIZATION; ARGININE-VASOPRESSIN; VPAC(2) RECEPTOR; GENE-EXPRESSION; KURAMOTO MODEL; MESSENGER-RNA; PEPTIDE; RAT;
D O I
10.1371/journal.pcbi.1003565
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Robust synchronization is a critical feature of several systems including the mammalian circadian clock. The master circadian clock in mammals consists of about 20000 sloppy' neuronal oscillators within the hypothalamus that keep robust time by synchronization driven by inter-neuronal coupling. The complete understanding of this synchronization in the mammalian circadian clock and the mechanisms underlying it remain an open question. Experiments and computational studies have shown that coupling individual oscillators can achieve robust synchrony, despite heterogeneity and different network topologies. But, much less is known regarding the mechanisms and circuits involved in achieving this coupling, due to both system complexity and experimental limitations. Here, we computationally study the coupling mediated by the primary coupling neuropeptide, vasoactive intestinal peptide (VIP) and its canonical receptor, VPAC2R, using the transcriptional elements and generic mode of VIP-VPAC2R signaling. We find that synchrony is only possible if VIP (an inducer of Per expression) is released in-phase with activators of Per expression. Moreover, anti-phasic VIP release suppresses coherent rhythms by moving the network into a desynchronous state. Importantly, experimentally observed rhythms in VPAC2R have little effect on network synchronization, but can improve the amplitude of the SCN network rhythms while narrowing the network entrainment range. We further show that these findings are valid across several computational network models. Thus, we identified a general design principle to achieve robust synchronization: An activating coupling agent, such as VIP, must act in-phase with the activity of core-clock promoters. More generally, the phase of coupling is as critical as the strength of coupling from the viewpoint of synchrony and entrainment.
引用
收藏
页数:11
相关论文
共 66 条
[1]   Coupling governs entrainment range of circadian clocks [J].
Abraham, Ute ;
Granada, Adrian E. ;
Westermark, Pal O. ;
Heine, Markus ;
Kramer, Achim ;
Herzel, Hanspeter .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[2]   Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections [J].
Abrahamson, EE ;
Moore, RY .
BRAIN RESEARCH, 2001, 916 (1-2) :172-191
[3]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[4]   A neuropeptide speeds circadian entrainment by reducing intercellular synchrony [J].
An, Sungwon ;
Harang, Rich ;
Meeker, Kirsten ;
Granados-Fuentes, Daniel ;
Tsai, Connie A. ;
Mazuski, Cristina ;
Kim, Jihee ;
Doyle, Francis J., III ;
Petzold, Linda R. ;
Herzog, Erik D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (46) :E4355-E4361
[5]   Spatiotemporal Distribution of Vasoactive Intestinal Polypeptide Receptor 2 in Mouse Suprachiasmatic Nucleus [J].
An, Sungwon ;
Tsai, Connie ;
Ronecker, Julie ;
Bayly, Alison ;
Herzog, Erik D. .
JOURNAL OF COMPARATIVE NEUROLOGY, 2012, 520 (12) :2730-2741
[6]   Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase [J].
An, Sungwon ;
Irwin, Robert P. ;
Allen, Charles N. ;
Tsai, Connie ;
Herzog, Erik D. .
JOURNAL OF NEUROPHYSIOLOGY, 2011, 105 (05) :2289-2296
[7]  
[Anonymous], 2011, MATLAB 2011 VERS 7 1
[8]   Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons [J].
Aton, SJ ;
Colwell, CS ;
Harmar, AJ ;
Waschek, J ;
Herzog, ED .
NATURE NEUROSCIENCE, 2005, 8 (04) :476-483
[9]  
Ban Y, 1997, J NEUROSCI, V17, P3920
[10]   Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus [J].
Bernard, Samuel ;
Gonze, Didier ;
Cajavec, Branka ;
Herzel, Hanspeter ;
Kramer, Achim .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (04) :667-679