APPROXIMATING CRITICAL PARAMETERS OF BRANCHING RANDOM WALKS

被引:15
|
作者
Bertacchi, Daniela [1 ]
Zucca, Fabio [2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[2] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
Branching random walk; critical parameters; percolation; graphs; HOMOGENEOUS TREES; ERGODIC-THEOREMS; CONTACT PROCESS; GRAPHS;
D O I
10.1239/jap/1245676100
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a branching random walk on a graph, we consider two kinds of truncations: either by inhibiting the reproduction outside a subset of vertices or by allowing at most m particles per vertex. We investigate the convergence of weak and strong critical parameters of these truncated branching random walks to the analogous parameters of the original branching random walk. As a corollary, we apply our results to the study of the strong critical parameter of a branching random walk restricted to the cluster of a Bernoulli bond percolation.
引用
收藏
页码:463 / 478
页数:16
相关论文
共 50 条
  • [1] The number of ends of critical branching random walks
    Candellero, Elisabetta
    Roberts, Matthew I.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2015, 12 (01): : 55 - 67
  • [2] Critical branching random walks with small drift
    Zheng, Xinghua
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (09) : 1821 - 1836
  • [3] Critical behaviorsand critical values of branching random walks on multigraphs
    Bertacchi, Daniela
    Zucca, Fabio
    JOURNAL OF APPLIED PROBABILITY, 2008, 45 (02) : 481 - 497
  • [4] Limit theorem for critical catalytic branching random walks
    Vatutin, VA
    Topchii, VA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2004, 49 (03) : 498 - 518
  • [5] Critical branching random walks on low-dimensional lattices
    Yarovaya, E. B.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2009, 19 (02): : 191 - 214
  • [6] On the maximal displacement of near-critical branching random walks
    Eyal Neuman
    Xinghua Zheng
    Probability Theory and Related Fields, 2021, 180 : 199 - 232
  • [7] On the maximal displacement of near-critical branching random walks
    Neuman, Eyal
    Zheng, Xinghua
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 180 (1-2) : 199 - 232
  • [8] Invariant measures of critical branching random walks in high dimension
    Rapenne, Valentin
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [9] Global survival of branching random walks and tree-like branching random walks
    Bertacchi, Daniela
    Coletti, Cristian F.
    Zucca, Fabio
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 381 - 402
  • [10] Branching Random Walks and Martingales
    Shi, Zhan
    BRANCHING RANDOM WALKS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLII - 2012, 2015, 2151 : 19 - 28