A single-chamber membraneless microbial fuel cell exposed to air using Shewanella putrefaciens

被引:19
作者
Vicari, Fabrizio [1 ]
D'Angelo, Adriana [1 ]
Galia, Alessandro [1 ]
Quatrini, Paola [2 ]
Scialdone, Onofrio [1 ]
机构
[1] Univ Palermo, Dipartimento Innovaz Ind & Digitale Ingn Chim Ges, Viale Sci ,Ed 6, I-90128 Palermo, PA, Italy
[2] Univ Palermo, Dipartimento Sci & Tecnol, Biol Chim & Farmaceut, Viale Sci ,Ed 6, I-90128 Palermo, PA, Italy
关键词
Microbial fuel cell; Shewanella putrefaciens; Biocathode; Membraneless MFC; Compact graphite cathode; Horizontal cathode; WASTE-WATER TREATMENT; ELECTRICITY-GENERATION; ELECTRON-TRANSFER; POWER PRODUCTION; CARBON REMOVAL; CATHODE; DESIGN; LESS; ONEIDENSIS; BIOCATHODE;
D O I
10.1016/j.jelechem.2016.11.010
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Microbial Fuel Cells (MFCs) are bio-electrochemical devices which convert the chemical energy content of organic fuels into electricity, thanks to the ability of anode respiring bacteria to give electrons to the anode. This result is usually achieved under anaerobic conditions, obtained with a sealed anode chamber. Despite this, Shewanella oneidensis has been recognized by many authors to obtain the same results in presence of air. Furthermore, another member of the Pseudomonaceae family, Shewanella putrefaciens, has also shown the capability to catalyze the cathodic oxygen reduction. In this work the capability of S. putrefaciens to work under both anaerobic and micro-aerobic conditions was exploited using a simple and cheap undivided MFC without separators and contacted with air. The presence of S. putrefaciens allowed to produce current and power in the presence of air using cheap compact graphite cathodes and carbon felt anodes. The utilization of horizontal cathode increased current output. It was found that Shewanella putrefaciens is likely to act as biocatalyst also for the cathodic process. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:268 / 273
页数:6
相关论文
共 46 条
[1]   Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell [J].
Aldrovandi, Aba ;
Marsili, Enrico ;
Stante, Loredana ;
Paganin, Patrizia ;
Tabacchioni, Silvia ;
Giordano, Andrea .
BIORESOURCE TECHNOLOGY, 2009, 100 (13) :3252-3260
[2]   Diversifying biological fuel cell designs by use of nanoporous filters [J].
Biffinger, Justin C. ;
Ray, Ricky ;
Little, Brenda ;
Ringeisen, Bradley R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (04) :1444-1449
[3]  
Brock T.D., 2006, BIOL MICROORG ELEV E, P909
[4]   Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential [J].
Carmona-Martinez, Alessandro A. ;
Harnisch, Falk ;
Kuhlicke, Ute ;
Neu, Thomas R. ;
Schroeder, Uwe .
BIOELECTROCHEMISTRY, 2013, 93 :23-29
[5]   Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants [J].
Carmona-Martinez, Alessandro A. ;
Harnisch, Falk ;
Fitzgerald, Lisa A. ;
Biffinger, Justin C. ;
Ringeisen, Bradley R. ;
Schroeder, Uwe .
BIOELECTROCHEMISTRY, 2011, 81 (02) :74-80
[6]   Operational, design and microbial aspects related to power production with microbial fuel cells implemented in constructed wetlands [J].
Corbella, Clara ;
Guivernau, Miriam ;
Vinas, Marc ;
Puigagut, Jaume .
WATER RESEARCH, 2015, 84 :232-242
[7]  
De Schamphelaire L., 2008, ENVIRON SCI TECHNOL, V42, P3053
[8]  
Devasahayam M, 2012, INDIAN J EXP BIOL, V50, P430
[9]   Bio-Electro-Fenton Process Driven by Microbial Fuel Cell for Wastewater Treatment [J].
Feng, Chun-Hua ;
Li, Fang-Bai ;
Mai, Hong-Jian ;
Li, Xiang-Zhong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (05) :1875-1880
[10]   Electron transfer pathways in microbial oxygen biocathodes [J].
Freguia, Stefano ;
Tsujimura, Seiya ;
Kano, Kenji .
ELECTROCHIMICA ACTA, 2010, 55 (03) :813-818