Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

被引:38
作者
Bahabry, Rabab R. [1 ]
Kutbee, Arwa T. [1 ]
Khan, Sherjeel M. [2 ]
Sepulveda, Adrian C. [1 ]
Wicaksono, Irmandy [3 ]
Nour, Maha [2 ]
Wehbe, Nimer [4 ]
Almislem, Amani S. [2 ]
Ghoneim, Mohamed T. [2 ]
Sevilla, Galo A. Torres [2 ]
Syed, Ahad [2 ,5 ]
Shaikh, Sohail F.
Hussain, Muhammad M. [2 ]
机构
[1] KAUST, Phys Sci & Engn Div, Integrated Nanotechnol Lab & Integrated Disrupt E, Mat Sci & Engn, Thuwal 239556900, Saudi Arabia
[2] KAUST, Comp Elect & Math Sci & Engn Div, Integrated Nanotechnol Lab & Integrated Disrupt E, Elect Engn, Thuwal 239556900, Saudi Arabia
[3] Swiss Fed Inst Technol, Dept Elect Engn & Informat Technol, Ramistr 101, CH-8092 Zurich, Switzerland
[4] King Abdullah Univ Sci & Technol, Imaging & Characterizat Lab Core Facil, Thuwal 239556900, Saudi Arabia
[5] King Abdullah Univ Sci & Technol, Nanofabricat Core Lab, Thuwal 239556900, Saudi Arabia
关键词
CMOS devices; c-Si solar cells; flexible PV; high efficiency; large-scale photovoltaics; ULTRATHIN; SKIN; SOFT;
D O I
10.1002/aenm.201702221
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline siliconbased solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 x 127 cm(2)) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 mu m and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 mu m of the back contacts is shown that carries the solar cells segments.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs [J].
Baca, Alfred J. ;
Yu, Ki Jun ;
Xiao, Jianliang ;
Wang, Shuodao ;
Yoon, Jongseung ;
Ryu, Jae Ha ;
Stevenson, Darren ;
Nuzzo, Ralph G. ;
Rockett, Angus A. ;
Huang, Yonggang ;
Rogers, John A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (02) :208-211
[2]   High-efficiency crystalline silicon solar cells: status and perspectives [J].
Battaglia, Corsin ;
Cuevas, Andres ;
De Wolf, Stefaan .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) :1552-1576
[3]   25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters [J].
Bauer, Siegfried ;
Bauer-Gogonea, Simona ;
Graz, Ingrid ;
Kaltenbrunner, Martin ;
Keplinger, Christoph ;
Schwoediauer, Reinhard .
ADVANCED MATERIALS, 2014, 26 (01) :149-162
[4]   Advances in monocrystalline Si thin film solar cells by layer transfer [J].
Bergmann, RB ;
Berge, C ;
Rinke, TJ ;
Schmidt, J ;
Werner, JH .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 74 (1-4) :213-218
[5]   Microsystems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell [J].
Cruz-Campa, Jose L. ;
Okandan, Murat ;
Resnick, Paul J. ;
Clews, Peggy ;
Pluym, Tammy ;
Grubbs, Robert K. ;
Gupta, Vipin P. ;
Zubia, David ;
Nielson, Gregory N. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (02) :551-558
[6]   Fractal design concepts for stretchable electronics [J].
Fan, Jonathan A. ;
Yeo, Woon-Hong ;
Su, Yewang ;
Hattori, Yoshiaki ;
Lee, Woosik ;
Jung, Sung-Young ;
Zhang, Yihui ;
Liu, Zhuangjian ;
Cheng, Huanyu ;
Falgout, Leo ;
Bajema, Mike ;
Coleman, Todd ;
Gregoire, Dan ;
Larsen, Ryan J. ;
Huang, Yonggang ;
Rogers, John A. .
NATURE COMMUNICATIONS, 2014, 5
[7]   Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication [J].
Gao, Zan ;
Bumgardner, Clifton ;
Song, Ningning ;
Zhang, Yunya ;
Li, Jingjing ;
Li, Xiaodong .
NATURE COMMUNICATIONS, 2016, 7
[8]   A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs [J].
Goodrich, Alan ;
Hacke, Peter ;
Wang, Qi ;
Sopori, Bhushan ;
Margolis, Robert ;
James, Ted L. ;
Woodhouse, Michael .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 114 :110-135
[9]  
Gutierrez E. A., 2016, NANO SCALED SEMICOND
[10]   A Highly Stretchable Fiber-Based Triboelectric Nanogenerator for Self-Powered Wearable Electronics [J].
He, Xu ;
Zi, Yunlong ;
Guo, Hengyu ;
Zheng, Haiwu ;
Xi, Yi ;
Wu, Changsheng ;
Wang, Jie ;
Zhang, Wei ;
Lu, Canhui ;
Wang, Zhong Lin .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (04)