Classical and Quantum Superintegrability of Stackel Systems

被引:4
作者
Blaszak, Maciej [1 ]
Marciniak, Krzysztof [2 ]
机构
[1] Adam Mickiewicz Univ, Div Math Phys, Fac Phys, Poznan, Poland
[2] Linkoping Univ, Dept Sci & Technol, Campus Norrkoping, Linkoping, Sweden
关键词
Hamiltonian systems; classical and quantum superintegrable systems; Stackel systems; Hamilton-Jacobi theory; Stackel transform; INTEGRABLE HAMILTONIAN-SYSTEMS; DIMENSIONAL CURVED SPACES; MAXIMAL SUPERINTEGRABILITY; BENENTI SYSTEMS;
D O I
10.3842/SIGMA.2017.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss maximal superintegrability of both classical and quantum Stackel systems. We prove a sufficient condition for a flat or constant curvature Stackel system to be maximally superintegrable. Further, we prove a sufficient condition for a Stackel transform to preserve maximal superintegrability and we apply this condition to our class of Stackel systems, which yields new maximally superintegrable systems as conformal deformations of the original systems. Further, we demonstrate how to perform the procedure of minimal quantization to considered systems in order to produce quantum superintegrable and quantum separable systems.
引用
收藏
页数:23
相关论文
共 24 条
  • [1] [Anonymous], 1954, GRUNDLEHREN MATH WIS
  • [2] A maximally superintegrable deformation of the N-dimensional quantum Kepler-Coulomb system
    Ballesteros, A.
    Enciso, A.
    Herranz, F. J.
    Ragnisco, O.
    Riglioni, D.
    [J]. XXIST INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS21), 2013, 474
  • [3] Maximal superintegrability on N-dimensional curved spaces
    Ballesteros, A
    Herranz, FJ
    Santander, M
    Sanz-Gil, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07): : L93 - L99
  • [4] Superintegrable Anharmonic Oscillators on N-dimensional Curved Spaces
    Ballesteros, Angel
    Enciso, Alberto
    Jose Herranz, Francisco
    Ragnisco, Orlando
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 43 - 52
  • [5] Maximal superintegrability of Benenti systems
    Blaszak, M
    Sergyeyev, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (01): : L1 - L5
  • [6] Natural coordinates for a class of Benenti systems
    Blaszak, Maciej
    Sergyeyev, Artur
    [J]. PHYSICS LETTERS A, 2007, 365 (1-2) : 28 - 33
  • [7] Separable quantizations of Stackel systems
    Blaszak, Maciej
    Marciniak, Krzysztof
    Domanski, Ziemowit
    [J]. ANNALS OF PHYSICS, 2016, 371 : 460 - 477
  • [8] On Reciprocal Equivalence of Stackel Systems
    Blaszak, Maciej
    Marciniak, Krzysztof
    [J]. STUDIES IN APPLIED MATHEMATICS, 2012, 129 (01) : 26 - 50
  • [9] Generalized Stackel systems
    Blaszak, Maciej
    Sergyeyev, Artur
    [J]. PHYSICS LETTERS A, 2011, 375 (27) : 2617 - 2623
  • [10] STACKEL-EQUIVALENT INTEGRABLE HAMILTONIAN-SYSTEMS
    BOYER, CP
    KALNINS, EG
    MILLER, W
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) : 778 - 797