Size effects and strain localization in atomic-scale cleavage modeling

被引:11
|
作者
Elsner, B. A. M. [1 ]
Mueller, S. [1 ]
机构
[1] Hamburg Univ Technol, Inst Adv Ceram, D-21073 Hamburg, Germany
关键词
density functional theory (DFT); cleavage; uniaxial tension; localization; size effects; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; ELASTIC BAND METHOD; FRACTURE; SIMULATION; AVALANCHE; STRENGTH; POINTS; METALS;
D O I
10.1088/0953-8984/27/34/345002
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt
    Tritsaris, G. A.
    Greeley, J.
    Rossmeisl, J.
    Norskov, J. K.
    CATALYSIS LETTERS, 2011, 141 (07) : 909 - 913
  • [2] Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt
    G. A. Tritsaris
    J. Greeley
    J. Rossmeisl
    J. K. Nørskov
    Catalysis Letters, 2011, 141 : 909 - 913
  • [3] Atomic-scale modeling of nanoconstrictions
    Mukherjee, S
    Litvinov, D
    Khizroev, S
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) : 2143 - 2145
  • [4] Atomic-Scale Modeling for Materials and Chemistry
    Le, Nam Q.
    Domenico, Janna
    Salerno, K. Michael
    Stiles, Christopher D.
    Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 2023, 36 (04): : 431 - 439
  • [5] Atomic-Scale Modeling for Materials and Chemistry
    Le, Nam Q.
    Domenico, Janna
    Salerno, K. Michael
    Stiles, Christopher D.
    JOHNS HOPKINS APL TECHNICAL DIGEST, 2023, 36 (04): : 431 - 439
  • [6] Nanolaser technology with atomic-scale field localization
    Ren-Min Ma
    Nature Reviews Electrical Engineering, 2024, 1 (10): : 632 - 633
  • [7] Atomic-scale simulations of strain localization in three-dimensional model amorphous solids
    Shi, Yunfeng
    Falk, Michael L.
    PHYSICAL REVIEW B, 2006, 73 (21):
  • [8] Atomic-scale modeling of the void nucleation, growth, and coalescence in Al at high strain rates
    Yang, Xin
    Zeng, Xiangguo
    Wang, Jian
    Wang, Jiabin
    Wang, Fang
    Ding, Jun
    MECHANICS OF MATERIALS, 2019, 135 : 98 - 113
  • [9] Atomic-scale modeling of the deformation of nanocrystalline metals
    Schiotz, J.
    Vegge, T.
    Jacobsen, K.W.
    Materials Research Society Symposium - Proceedings, 1999, 538 : 299 - 308
  • [10] Atomic-scale magnetic modeling of oxide nanoparticles
    Kodama, RH
    Berkowitz, AE
    PHYSICAL REVIEW B, 1999, 59 (09): : 6321 - 6336