Surface modification to fabricate dual superlyophobic mesh for efficient oil/water separation

被引:10
|
作者
Xu, Chang-Lian [1 ,2 ]
机构
[1] Sichuan Agr Univ, Coll Environm Sci, Chengdu 611130, Peoples R China
[2] Sichuan Univ, Collaborat Innovat Ctr Ecofriendly & Fire Safety, Natl Engn Lab Ecofriendly Polymer Mat Sichuan, State Key Lab Polymer Mat Engn,Coll Chem, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
Superlyophobic; Hydrothermal; Oil/water separation; Surface wettability; COATED MESH; WATER; REMOVAL; SYSTEMS;
D O I
10.1016/j.jclepro.2020.122872
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
How to solve water pollution caused by oil spills using special wetting materials with high efficiency is still a challenge. Herein, dual superlyophobic stainless steel mesh with hierarchical structures was produced via in-situ surface modification. Field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy elemental (EDX) mapping results show that the frames of the mesh were fully covered by a layer of multi-scale structures. The mesh is both hydrophilic and oleophilic in air, whereas is dual superlyophobic in several kinds of oil-water systems due to its special structures. Artificial polluted waters were prepared using organic oils with diverse density, and then purified via the mesh with separation efficiency >99.90% even after 80 cycles. Moreover, the mesh has stable water penetration ability at various temperature with water flux of similar to to 53.8 L m(-2).s(-1). Water pollutions caused by viscous diesel oil or crude oil were well separated at 65 degrees C with high efficiency (>99.90%), and could also keep this high efficiency at 85 degrees C. Thus, not only a surface modification method is improved to fabricate dual superlyophobic materials, but also a superlyophobic mesh is produced to resolve oil pollution resulted from oil spills. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A Facile Approach to Fabricate the Durable and Buoyant Superhydrophobic Fabric for Efficient Oil/Water Separation
    He, Jinmei
    Zhang, Yi
    Zhou, Yichen
    Wang, Jiaxin
    Zhao, Yu
    Ma, Lili
    Abbas, Ansar
    Qu, Mengnan
    FIBERS AND POLYMERS, 2019, 20 (05) : 1003 - 1010
  • [22] Efficient oil/water separation by superhydrophobic CuxS coated on copper mesh
    Khosravi, Maryam
    Azizian, Saeid
    Boukherroub, Rabah
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 215 : 573 - 581
  • [23] In Situ Redox Strategy to Fabricate Superhydrophobic Sponges for Efficient Oil-Water Separation
    Ji, Jiawei
    Jia, Qian
    Chen, Ruoyu
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (09) : 5287 - 5296
  • [24] A Facile Approach to Fabricate the Durable and Buoyant Superhydrophobic Fabric for Efficient Oil/Water Separation
    Jinmei He
    Yi Zhang
    Yichen Zhou
    Jiaxin Wang
    Yu Zhao
    Lili Ma
    Ansar Abbas
    Mengnan Qu
    Fibers and Polymers, 2019, 20 : 1003 - 1010
  • [25] Green Approach to the Fabrication of Superhydrophobic Mesh Surface for Oil/Water Separation
    Wang, Fajun
    Lei, Sheng
    Xu, Yao
    Ou, Junfei
    CHEMPHYSCHEM, 2015, 16 (10) : 2237 - 2243
  • [26] Unusual Dual Superlyophobic Surfaces in Oil-Water Systems: The Design Principles
    Tian, Xuelin
    Jokinen, Ville
    Li, Juan
    Sainio, Jani
    Ras, Robin H. A.
    ADVANCED MATERIALS, 2016, 28 (48) : 10652 - +
  • [27] A Universal Strategy for the Preparation of Dual Superlyophobic Surfaces in Oil-Water Systems
    Wu, Mingming
    Shi, Guogui
    Liu, Weimin
    Long, Yifei
    Mu, Peng
    Li, Jian
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (12) : 14759 - 14767
  • [28] Electrospinning to fabricate composite membranes with improved superhydrophobic properties for efficient oil-water separation
    Wang, Xiaohui
    Li, Xinmei
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [29] A mesh membrane coated with dual-scale superhydrophobic nano zinc oxide: Efficient oil-water separation
    Velayi, Elmira
    Norouzbeigi, Reza
    SURFACE & COATINGS TECHNOLOGY, 2020, 385
  • [30] Modification of ultrafine silk fibroin powder for efficient oil/water separation
    Huang, Jian
    Mao, Yunshan
    Wang, Yunli
    Xu, Weilin
    ADVANCED POWDER TECHNOLOGY, 2025, 36 (03)