The principal eigenvalue of a space-time periodic parabolic operator

被引:59
作者
Nadin, Gregoire [1 ]
机构
[1] Ecole Normale Super, CNRS, UMR8553, Dept Math & Applicat, F-75230 Paris 05, France
关键词
Generalized principal eigenvalue; Parabolic periodic operator; FRAGMENTED ENVIRONMENT MODEL; 2ND-ORDER ELLIPTIC-OPERATORS; EQUATIONS; PROPAGATION; INEQUALITY;
D O I
10.1007/s10231-008-0075-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the generalized principal eigenvalue of the parabolic operator L phi = partial derivative(t)phi - del center dot (A(t, x)del phi) + q(t, x) center dot del phi - mu(t, x)phi, where the coefficients are periodic in t and x. We give the definition of this eigenvalue and we prove that it can be approximated by a sequence of principal eigenvalues associated to the same operator in a bounded domain, with periodicity in time and Dirichlet boundary conditions in space. Next, we define a family of periodic principal eigenvalues associated with the operator and use it to give a characterization of the generalized principal eigenvalue. Finally, we study the dependence of all these eigenvalues with respect to the coefficients.
引用
收藏
页码:269 / 295
页数:27
相关论文
共 22 条
[1]  
ALVINO A, 1990, ANN I H POINCARE-AN, V7, P37
[2]  
Alvino A., 1991, Differential Integral Equations, V4, P25
[3]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[4]   Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1101-1146
[5]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113
[6]  
Berestycki H, 2005, J EUR MATH SOC, V7, P173
[7]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[8]   Liouville-type results for semilinear elliptic equations in unbounded domains [J].
Berestycki, Henri ;
Hamel, Francois ;
Rossi, Luca .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (03) :469-507
[9]   DIFFUSIVE LOGISTIC EQUATIONS WITH INDEFINITE WEIGHTS - POPULATION-MODELS IN DISRUPTED ENVIRONMENTS [J].
CANTRELL, RS ;
COSNER, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 112 :293-318
[10]  
ELSMAILY M, PULSATING TRAVELLING