On the elliptic curve y 2 = x 3-2rDx and factoring integers

被引:2
作者
Li XiuMei [1 ]
Zeng JinXiang [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
elliptic curve; integer factoring; Selmer group; POINTS;
D O I
10.1007/s11425-014-4769-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D = pq be the product of two distinct odd primes. Assuming the parity conjecture, we construct infinitely many r a (c) 3/4 1 such that E (2rD) : y (2) = x (3) -2rDx has conjectural rank one and v (p) (x([k]Q)) not equal v (q) (x([k]Q)) for any odd integer k, where Q is the generator of the free part of E(a"e). Furthermore, under the generalized Riemann hypothesis, the minimal value of r is less than c log(4) D for some absolute constant c. As a corollary, one can factor D by computing the generator Q.
引用
收藏
页码:719 / 728
页数:10
相关论文
共 13 条