On the elliptic curve y 2 = x 3-2rDx and factoring integers

被引:2
作者
Li XiuMei [1 ]
Zeng JinXiang [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
elliptic curve; integer factoring; Selmer group; POINTS;
D O I
10.1007/s11425-014-4769-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D = pq be the product of two distinct odd primes. Assuming the parity conjecture, we construct infinitely many r a (c) 3/4 1 such that E (2rD) : y (2) = x (3) -2rDx has conjectural rank one and v (p) (x([k]Q)) not equal v (q) (x([k]Q)) for any odd integer k, where Q is the generator of the free part of E(a"e). Furthermore, under the generalized Riemann hypothesis, the minimal value of r is less than c log(4) D for some absolute constant c. As a corollary, one can factor D by computing the generator Q.
引用
收藏
页码:719 / 728
页数:10
相关论文
共 13 条
  • [1] [Anonymous], 1994, GRAD TEXTS MATH
  • [2] Explicit bounds for primes in residue classes
    Bach, E
    Sorenson, J
    [J]. MATHEMATICS OF COMPUTATION, 1996, 65 (216) : 1717 - 1735
  • [3] Birch B.J., 1966, Topology, V5, P295, DOI [10.1016/0040-9383(66)90021-8, DOI 10.1016/0040-9383(66)90021-8]
  • [4] Integral points in arithmetic progression on y2=x(x2-n2)
    Bremner, A
    Silverman, JH
    Tzanakis, N
    [J]. JOURNAL OF NUMBER THEORY, 2000, 80 (02) : 187 - 208
  • [5] Burhanuddin I A, 2007, THESIS U SO CALIFORN
  • [6] Dokchitser Tim., 2013, Adv. Courses Math. CRM Barcelona, P201, DOI DOI 10.1007/978-3-0348-0618-35
  • [7] Edixhoven B, 2002, ASTERISQUE, P161
  • [8] ELKIES ND, 1994, LECT NOTES COMPUT SC, V877, P122, DOI DOI 10.1007/3-540-58691-1_49
  • [9] HEEGNER POINTS AND DERIVATIVES OF L-SERIES
    GROSS, BH
    ZAGIER, DB
    [J]. INVENTIONES MATHEMATICAE, 1986, 84 (02) : 225 - 320
  • [10] Lang S., 1983, ARITHMETIC GEOMETRY, V35, P155