The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux

被引:929
作者
Samuel, Varman T. [1 ,2 ]
Shulman, Gerald I. [1 ,3 ,4 ]
机构
[1] Yale Univ, Sch Med, Dept Med, New Haven, CT 06520 USA
[2] Vet Affairs Med Ctr, West Haven, CT USA
[3] Yale Univ, Sch Med, Dept Cellular & Mol Physiol, New Haven, CT 06510 USA
[4] Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06510 USA
关键词
FATTY LIVER-DISEASE; PROTEIN-KINASE-C; ELEMENT-BINDING PROTEIN; PHOSPHATIDYLINOSITOL 3-KINASE ACTIVITY; GLUCOSE-TRANSPORTER TRANSLOCATION; MAGNETIC-RESONANCE-SPECTROSCOPY; HEPATIC GLYCOGEN-SYNTHESIS; ADIPOSE-TISSUE LIPOLYSIS; TYPE-2 DIABETIC PARENTS; PITUITARY-ADRENAL AXIS;
D O I
10.1172/JCI77812
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Insulin resistance arises when the nutrient storage pathways evolved to maximize efficient energy utilization are exposed to chronic energy surplus. Ectopic lipid accumulation in liver and skeletal muscle triggers pathways that impair insulin signaling, leading to reduced muscle glucose uptake and decreased hepatic glycogen synthesis. Muscle insulin resistance, due to ectopic lipid, precedes liver insulin resistance and diverts ingested glucose to the liver, resulting in increased hepatic de novo lipogenesis and hyperlipidemia. Subsequent macrophage infiltration into white adipose tissue (WAT) leads to increased lipolysis, which further increases hepatic triglyceride synthesis and hyperlipidemia due to increased fatty acid esterification. Macrophage-induced WAT lipolysis also stimulates hepatic gluconeogenesis, promoting fasting and postprandial hyperglycemia through increased fatty acid delivery to the liver, which results in increased hepatic acetylCoA content, a potent activator of pyruvate carboxylase, and increased glycerol conversion to glucose. These substrate-regulated processes are mostly independent of insulin signaling in the liver but are dependent on insulin signaling in WAT, which becomes defective with inflammation. Therapies that decrease ectopic lipid storage and diminish macrophage-induced WAT lipolysis will reverse the root causes of type 2 diabetes.
引用
收藏
页码:12 / 22
页数:11
相关论文
共 128 条
  • [1] Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver
    Abel, ED
    Peroni, O
    Kim, JK
    Kim, YB
    Boss, O
    Hadro, E
    Minnemann, T
    Shulman, GI
    Kahn, BB
    [J]. NATURE, 2001, 409 (6821) : 729 - 733
  • [2] Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha
    Alessi, DR
    James, SR
    Downes, CP
    Holmes, AB
    Gaffney, PRJ
    Reese, CB
    Cohen, P
    [J]. CURRENT BIOLOGY, 1997, 7 (04) : 261 - 269
  • [3] Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis
    Asano, Takeharu
    Watanabe, Kiyotaka
    Kubota, Naoto
    Gunji, Toshiaki
    Omata, Masao
    Kadowaki, Takashi
    Ohnishi, Shin
    [J]. JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2009, 24 (10) : 1669 - 1676
  • [4] Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients
    Befroy, Douglas E.
    Petersen, Kitt Falk
    Dufour, Sylvie
    Mason, Graeme F.
    de Graaf, Robin A.
    Rothman, Douglas L.
    Shulman, Gerald I.
    [J]. DIABETES, 2007, 56 (05) : 1376 - 1381
  • [5] Chronic TNFα and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis
    Bezaire, Veronic
    Mairal, Aline
    Anesia, Rodica
    Lefort, Corinne
    Langin, Dominique
    [J]. FEBS LETTERS, 2009, 583 (18): : 3045 - 3049
  • [6] Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity
    Bindesboll, Christian
    Fan, Qiong
    Norgaard, Rikke C.
    MacPherson, Laura
    Ruan, Hai-Bin
    Wu, Jing
    Pedersen, Thomas A.
    Steffensen, Knut R.
    Yang, Xiaoyong
    Matthews, Jason
    Mandrup, Susanne
    Nebb, Hilde I.
    Gronning-Wang, Line M.
    [J]. JOURNAL OF LIPID RESEARCH, 2015, 56 (04) : 771 - 785
  • [7] Endoproteolytic Cleavage of TUG Protein Regulates GLUT4 Glucose Transporter Translocation
    Bogan, Jonathan S.
    Rubin, Bradley R.
    Yu, Chenfei
    Loeffler, Michael G.
    Orme, Charisse M.
    Belman, Jonathan P.
    McNally, Leah J.
    Hao, Mingming
    Cresswell, James A.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (28) : 23932 - 23947
  • [8] Regulation of Glucose Transporter Translocation in Health and Diabetes
    Bogan, Jonathan S.
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, VOL 81, 2012, 81 : 507 - 532
  • [9] Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking
    Bogan, JS
    Hendon, N
    McKee, AE
    Tsao, TS
    Lodish, HF
    [J]. NATURE, 2003, 425 (6959) : 727 - 733
  • [10] Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence
    Boyle, James P.
    Thompson, Theodore J.
    Gregg, Edward W.
    Barker, Lawrence E.
    Williamson, David F.
    [J]. POPULATION HEALTH METRICS, 2010, 8