GENERALIZED WINTGEN INEQUALITY FOR SUBMANIFOLDS IN KENMOTSU SPACE FORMS

被引:4
作者
Aquib, Mohd. [1 ]
Shahid, Mohammad Hasan [1 ]
机构
[1] Jamia Millia Islamia, Dept Math, Fac Nat Sci, New Delhi 110025, India
来源
TAMKANG JOURNAL OF MATHEMATICS | 2019年 / 50卷 / 02期
关键词
Wintgen inequality; Legendrian submanifold; Kenmotsu space forms; bi-slant submanifold; CURVATURE;
D O I
10.5556/j.tkjm.50.2019.2845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain the generalized Wintgen inequality for Legendrian submanifolds in Kenmotsu space forms and discuss the equality case of the inequality. Further, we discuss the inequality for bi-slant submanifolds in the same ambient space and derive its applications in various slant cases.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 12 条
[1]  
Arslan K., 2002, INT J MATH MATH SCI, V29, P719
[2]  
Boyom M. N., LECT NOTES COMPUTER
[3]  
Ge J., 2009, NATURAL INTRINSIC GE, V237, P87
[4]  
Ge J., 2009, PAC J MATH, V237, P87
[5]   NORMAL CURVATURE OF SURFACES IN SPACE-FORMS [J].
GUADALUPE, IV ;
RODRIGUEZ, L .
PACIFIC JOURNAL OF MATHEMATICS, 1983, 106 (01) :95-103
[6]  
Kenmotsu K., 1972, TOHOKU MATH J, V24, P93, DOI 10.2748/tmj/1178241594
[7]   Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms [J].
Lee, Chul Woo ;
Lee, Jae Won ;
Vilcu, Gabriel-Eduard .
ADVANCES IN GEOMETRY, 2017, 17 (03) :355-362
[8]   Normal Scalar Curvature Conjecture and its applications [J].
Lu, Zhiqin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (05) :1284-1308
[10]   Warped product submanifolds in Kenmotsu space forms [J].
Murathan, C. ;
Arslan, K. ;
Ezentas, R. ;
Mihai, I. .
TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (06) :1431-1441