LAGCARTW - A random walk particle advection-diffusion model

被引:0
|
作者
Sherwin, TJ [1 ]
机构
[1] Univ Wales, Marine Sci Labs, Unit Coastal & Estuarine Studies, Menai Bridge LL59 5EY, Gwynedd, Wales
关键词
random walk; computer animation; diffusion; computer program;
D O I
暂无
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
LAGCARTW (Lagrange Cartesian suite for Windows) provides a simple method for simulating and understanding diffusion using computer animations of random walk particles. The model is useful for teaching and demonstration purposes, but may also be used in an investigative mode-the suite optionally produces output files of particle positions which can be used in subsequent analysis. Current velocities (defined as a series of tidal harmonics) are defined over the model domain, and particles can be discharged from a series of outfalls, reflected or absorbed by boundaries, and allowed to decay. The program also allows a variable diffusion coefficient in the vertical plane. The input file can be altered quite easily via a separate interactive program. A series of demonstration files, used to illustrate examples of diffusion problems, are provided. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:83 / 102
页数:20
相关论文
共 50 条
  • [1] Random walk models of advection-diffusion in layered media
    Carr, Elliot J.
    APPLIED MATHEMATICAL MODELLING, 2025, 141
  • [2] Discrete Particle Distribution Model for Advection-Diffusion Transport
    Dian-Chang, Wang
    Xing-Kui, Wang
    Ming-Zhong, Yu
    Dan-Xun, Li
    Costa, Manuel
    Ferreira, João S.
    Journal of Hydraulic Engineering, 2001, 127 (11) : 980 - 981
  • [3] Discrete particle distribution model for advection-diffusion transport
    Wang, DC
    Wang, XK
    Yu, MZ
    Li, DX
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2001, 127 (11): : 980 - 980
  • [4] Discrete particle distribution model for advection-diffusion transport
    Costa, M
    Ferreira, JS
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2000, 126 (07): : 525 - 532
  • [5] Numeric solution of advection-diffusion equations by a discrete time random walk scheme
    Angstmann, Christopher N.
    Henry, Bruce, I
    Jacobs, Byron A.
    McGann, Anna, V
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (03) : 680 - 704
  • [6] An 'advection-diffusion' model for grain growth
    Player, MA
    Shi, Z
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (03) : 468 - 474
  • [7] 'Advection-diffusion' model for grain growth
    Univ of Aberdeen, Aberdeen, United Kingdom
    J Phys D, 3 (468-474):
  • [8] Continuous time random walk in a velocity field: role of domain growth, Galilei-invariant advection-diffusion, and kinetics of particle mixing
    Le Vot, F.
    Abad, E.
    Metzler, R.
    Yuste, S. B.
    NEW JOURNAL OF PHYSICS, 2020, 22 (07)
  • [9] A CONSERVATIVE PARTICLE APPROXIMATION FOR A BOUNDARY ADVECTION-DIFFUSION PROBLEM
    LUCQUINDESREUX, B
    MASGALLIC, S
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1992, 26 (06): : 757 - 791
  • [10] RANDOM WALKS, RANDOM FLOWS, AND ENHANCED DIFFUSIVITY IN ADVECTION-DIFFUSION EQUATIONS
    Taylor, Michael
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (04): : 1261 - 1287