Robust Visual Tracking Using Structure-Preserving Sparse Learning

被引:3
作者
Kim, Hyuncheol [1 ]
Jeon, Semi [1 ]
Lee, Sangkeun [2 ]
Paik, Joonki [3 ]
机构
[1] Chung Ang Univ, Dept Image, Seoul 13557, South Korea
[2] Chung Ang Univ, Grad Sch Adv Imaging Sci, Multimedia Comp Lab, Seoul 13557, South Korea
[3] Chung Ang Univ, Dept Image Engn, Seoul 156756, South Korea
关键词
Discriminative sparse learning; sparse representation; visual tracking; OBJECT TRACKING; APPEARANCE MODEL; SUBSPACE;
D O I
10.1109/LSP.2017.2689039
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Even though numerous visual tracking methods have been proposed to deal with image streams, it is a still challenging problem to facilitate a tracking method to accurately distinguish the target from the background without drifting under the severe appearance variation of target caused by distortion of local structures. For preserving local structures of target template datasets, we present a novel structure-preserving sparse learning algorithm by obtaining sparse coefficients under maximum margin projection-based subspace representation and by updating the sparse codes under multiple task feature selection framework. To reinforce local structures of targets, we adopted a novel optimization process using an accelerated proximal gradient shrinkage operation and an efficient stopping criterion. Experimental results demonstrate that the proposed method outperforms existing state-of-the-art tracking methods.
引用
收藏
页码:707 / 711
页数:5
相关论文
共 26 条
  • [1] [Anonymous], 2015, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2015.7298610
  • [2] [Anonymous], 2012, PROC CVPR IEEE
  • [3] Object Tracking via Robust Multitask Sparse Representation
    Bai, Yancheng
    Tang, Ming
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (08) : 909 - 913
  • [4] Incremental subspace learning via non-negative matrix factorization
    Bucak, Serhat S.
    Gunsel, Bilge
    [J]. PATTERN RECOGNITION, 2009, 42 (05) : 788 - 797
  • [5] An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    Daubechies, I
    Defrise, M
    De Mol, C
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) : 1413 - 1457
  • [6] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [7] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [8] Hare S, 2011, IEEE I CONF COMP VIS, P263, DOI 10.1109/ICCV.2011.6126251
  • [9] Learning a maximum margin subspace for image retrieval
    He, Xiaofei
    Cai, Deng
    Han, Jiawei
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (02) : 189 - 201
  • [10] High-Speed Tracking with Kernelized Correlation Filters
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) : 583 - 596