Nonlinear dynamics of a charged dust grain in a plasma

被引:12
作者
Elskens, Y
Resendes, DP
Mendonca, JT
机构
[1] UNIV AIX MARSEILLE 1, INST MEDITERRANEEN TECHNOL,URA 773,UMR 6633,CNRS, EQUIPE TURBULENCE PLASMA, F-13451 MARSEILLE 20, FRANCE
[2] INST SUPER TECN, CTR FIS PLASMAS, GRP LASERS & PLASMAS, P-1096 LISBON, PORTUGAL
关键词
D O I
10.1063/1.872582
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For an arbitrary monotonic charging function, the dynamics of a dust grain is dissipative and energy is a Liapunov function. In an arbitrary external potential two types of equilibria exist. The first type, with uncharged grain, is always unstable. The second type of equilibrium, admitting states of both positive and negative charge, can be marginally stable; stability depends on the local potential. Under spatially uniform (constant or time-dependent) potentials, motion is free while the charge adapts to the potential. For a spatially oscillating potential, the phase space is that of the simple pendulum with one additional degree of freedom, the charge. Dissipation in the charging process forbids periodic behavior and ensures the existence of attractors: A grain is at stable equilibrium only when charged positively and trapped in a potential well, or when charged negatively on top of a hill. The small oscillations near a stable equilibrium decay weakly, and the grain charge oscillates at twice the oscillation frequency. (C) 1997 American Institute of Physics.
引用
收藏
页码:4210 / 4217
页数:8
相关论文
共 13 条
[1]  
BLIOKH PV, 1995, DUSTY SELFGRAVITATIO
[2]   THE PHYSICS OF DUSTY PLASMAS [J].
DEANGELIS, U .
PHYSICA SCRIPTA, 1992, 45 (05) :465-474
[3]   DUSTY PLASMAS IN THE SOLAR-SYSTEM [J].
GOERTZ, CK .
REVIEWS OF GEOPHYSICS, 1989, 27 (02) :271-292
[4]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[5]   COLLISIONLESS BRAKING OF DUST PARTICLES IN THE ELECTROSTATIC-FIELD OF PLANETARY DUST RINGS [J].
HAVNES, O ;
ASLAKSEN, T ;
MELANDSO, F ;
NITTER, T .
PHYSICA SCRIPTA, 1992, 45 (05) :491-496
[6]   Charged dust dynamics in the solar system [J].
Horanyi, M .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1996, 34 :383-418
[7]   ELECTROSTATIC CHARGING PROPERTIES OF SIMULATED LUNAR DUST [J].
HORANYI, M ;
ROBERTSON, S ;
WALCH, B .
GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (16) :2079-2082
[8]   PERTURBATION TECHNIQUES FOR OSCILLATORY SYSTEMS WITH SLOWLY VARYING COEFFICIENTS [J].
KEVORKIAN, J .
SIAM REVIEW, 1987, 29 (03) :391-461
[9]   THE GRAVITO-ELECTRODYNAMICS OF CHARGED DUST IN PLANETARY MAGNETOSPHERES [J].
MENDIS, DA ;
HOUPIS, HLF ;
HILL, JR .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1982, 87 (NA5) :3449-3455
[10]   Probability phenomena due to separatrix crossing [J].
Neishtadt, A. I. .
CHAOS, 1991, 1 (01) :42-48