Finsler spaces whose geodesics are orbits

被引:41
作者
Yan, Zaili [1 ]
Deng, Shaoqiang [1 ,2 ]
机构
[1] Nankai Univ, Sch Mat Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Finsler g.o. spaces; Nilmanifolds; Randers metrics; HOMOGENEOUS RIEMANNIAN-MANIFOLDS; HEISENBERG TYPE; RANDERS SPACES; NAVIGATION; GEOMETRY; METRICS;
D O I
10.1016/j.difgeo.2014.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Finsler spaces whose geodesics are the orbits of one-parameter subgroups of the group of isometries (abbreviated as Finsler g.o. spaces). We first generalize some geometric results on Riemannian g.o. spaces to the Finslerian setting. Then we show that a Finsler g.o. nilmanifold is at most two step nilpotent and construct some examples of g.o. spaces which are neither Berwaldian nor weakly symmetric. Further, we give a sufficient and necessary condition for a Randers space to be a g.o. space. Finally, we show that every Clifford Wolf homogeneous Finsler space is a Finsler g.o. space. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 44 条
[1]   Riemannian flag manifolds with homogeneous geodesics [J].
Alekseevsky, Dmitri ;
Arvanitoyeorgos, Andreas .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (08) :3769-3789
[2]   Compact Riemannian Manifolds with Homogeneous Geodesics [J].
Alekseevsky, Dmitrii V. ;
Nikonorov, Yurii G. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
[3]   ON HOMOGENEOUS RIEMANNIAN MANIFOLDS [J].
AMBROSE, W ;
SINGER, IM .
DUKE MATHEMATICAL JOURNAL, 1958, 25 (04) :647-669
[4]  
[Anonymous], 1956, J INDIAN MATH SOC
[5]  
Atiyah M. F., 1964, Topology, V3, P3, DOI 10.1016/0040-9383(64)90003-5
[6]  
Bao D, 2004, J DIFFER GEOM, V66, P377
[7]  
Bao D., 2000, An Introduction to Riemann-Finsler Geometry
[8]  
Berestovskii VN, 2009, J DIFFER GEOM, V82, P467
[9]   Weakly symmetric groups of Heisenberg type [J].
Berndt, J ;
Ricci, F ;
Vanhecke, L .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1998, 8 (03) :275-284
[10]   Geodesics in weakly symmetric spaces [J].
Berndt, J ;
Kowalski, O ;
Vanhecke, L .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1997, 15 (02) :153-156