Growth of a Ge layer on 8 in. Si (100) substrates by rapid thermal chemical vapor deposition

被引:9
|
作者
Kil, Yeon-Ho [1 ,2 ]
Yang, Jong-Han [1 ,2 ]
Kang, Sukill [3 ]
Kim, Dae-Jung [4 ]
Jeong, Tae Soo [1 ]
Choi, Chel-Jong [1 ,2 ]
Kim, Taek Sung [1 ]
Shim, Kyu-Hwan [1 ,2 ]
机构
[1] Chonbuk Natl Univ, Semicond Phys Res Ctr, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, Sch Semicond & Chem Engn, Jeonju 561756, South Korea
[3] Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea
[4] Hanbat Natl Univ, Div Liberal Arts, Taejon 305719, South Korea
基金
新加坡国家研究基金会;
关键词
Growth; RTCVD; Ge layer; HR-XRD; AFM; TEM; EPD; Raman; Photocurrent; N-TYPE GE; TEMPERATURE-DEPENDENCE; RAMAN-SPECTROSCOPY; QUALITY; ENHANCEMENT; SEGREGATION; SI(100); GAP;
D O I
10.1016/j.mssp.2014.01.038
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have made the successful growth of Ge layer on 8 in. Si (100) substrates by rapid thermal chemical vapor deposition (RTCVD). In order to overcome the large lattice mismatch between Ge and Si, we used a two-step growth method. Our method shows the uniformity of the thickness and good quality Ge layer with a homogeneous distribution of tensile strain and a lower etch pit density (EPD) in order of 10(5) cm(-2). The surface morphology is very smooth and the root mean square (RMS) of the surface roughness was 0.27 nm. The photocurrent spectra were dominated by the Ge layer related transition that corresponding to the transitions of the Si and Ge. The roll-off in photocurrent spectra beyond 1600 nm is expected due to the decreased absorption of Ge. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 50 条
  • [1] Characterization of n-type Ge layers on Si (100) substrates grown by rapid thermal chemical vapor deposition
    Kil, Yeon-Ho
    Yang, Hyeon Deok
    Yang, Jong-Han
    Park, Ah Hyun
    Kang, Sukill
    Jeong, Tae Soo
    Kim, Taek Sung
    Shim, Kyu-Hwan
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2013, 16 (06) : 1405 - 1409
  • [2] Growth of a Ge Layer on a Si/SiO2/Si(100) Structure by the Hot Wire Chemical Vapor Deposition
    Sushkov, A. A.
    Pavlov, D. A.
    Denisov, S. A.
    Chalkov, V. Yu
    Kryukov, R. N.
    Pitirimova, E. A.
    SEMICONDUCTORS, 2020, 54 (10) : 1332 - 1335
  • [3] Growth of a Ge Layer on a Si/SiO2/Si(100) Structure by the Hot Wire Chemical Vapor Deposition
    A. A. Sushkov
    D. A. Pavlov
    S. A. Denisov
    V. Yu. Chalkov
    R. N. Kryukov
    E. A. Pitirimova
    Semiconductors, 2020, 54 : 1332 - 1335
  • [4] Growth of single-layer graphene on Ge (100) by chemical vapor deposition
    Mendoza, C. D.
    Caldas, P. G.
    Freire Jr, F. L.
    Maia da Costa, M. E. H.
    APPLIED SURFACE SCIENCE, 2018, 447 : 816 - 821
  • [5] Towards the Growth of Hexagonal Boron Nitride on Ge(001)/Si Substrates by Chemical Vapor Deposition
    Franck, Max
    Dabrowski, Jaroslaw
    Schubert, Markus Andreas
    Wenger, Christian
    Lukosius, Mindaugas
    NANOMATERIALS, 2022, 12 (19)
  • [6] The growth of β-SiC on Si and poly-Si on β-SiC by rapid thermal chemical vapor deposition
    Liu, CW
    Sturm, JC
    RAPID THERMAL AND INTEGRATED PROCESSING VI, 1997, 470 : 127 - 132
  • [7] HETEROEXPITAXIAL GROWTH OF GE ON (100)SI BY ULTRAHIGH-VACUUM, CHEMICAL VAPOR-DEPOSITION
    CUNNINGHAM, B
    CHU, JO
    AKBAR, S
    APPLIED PHYSICS LETTERS, 1991, 59 (27) : 3574 - 3576
  • [8] Growth of thick Ge epilayers on Si(100) substrates utilizing two-step approach by ultrahigh vacuum chemical vapor deposition
    Zhou, Zhiwen
    Zhang, Yuezong
    Shen, Xiaoxia
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 890 - +
  • [9] GROWTH AND CHARACTERIZATION OF GaAs LAYERS GROWN ON Ge/Si SUBSTRATES BY METALORGANIC CHEMICAL VAPOR DEPOSITION.
    Fukuda, Yukio
    Kadota, Yoshiaki
    Ohmachi, Yoshiro
    Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes, 1988, 27 (04): : 485 - 488
  • [10] GROWTH AND CHARACTERIZATION OF GAAS FILMS ON GE/SI COMPOSITE SUBSTRATES BY METALORGANIC CHEMICAL VAPOR-DEPOSITION
    DUPUIS, RD
    BEAN, JC
    BROWN, JM
    MACRANDER, AT
    JOURNAL OF ELECTRONIC MATERIALS, 1986, 15 (05) : 298 - 299