Scattering cluster wave functions on the lattice using the adiabatic projection method

被引:16
|
作者
Rokash, Alexander [1 ]
Pine, Michelle [2 ]
Elhatisari, Serdar [2 ,3 ,4 ]
Lee, Dean [2 ]
Epelbaum, Evgeny [1 ]
Krebs, Hermann [1 ]
机构
[1] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44870 Bochum, Germany
[2] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[3] Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany
[4] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany
来源
PHYSICAL REVIEW C | 2015年 / 92卷 / 05期
关键词
EFFECTIVE-FIELD THEORY; FINITE-VOLUME; ENERGY-SPECTRUM; PARTICLE STATES; DEPENDENCE; MATRIX;
D O I
10.1103/PhysRevC.92.054612
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The adiabatic projection method is a general framework for studying scattering and reactions on the lattice. It provides a low-energy effective theory for clusters, which becomes exact in the limit of large Euclidean projection time. Previous studies have used the adiabatic projection method to extract scattering phase shifts from finite periodic-box energy levels using Luscher's method. In this paper we demonstrate that scattering observables can be computed directly from asymptotic cluster wave functions. For a variety of examples in one and three spatial dimensions, we extract elastic phase shifts from asymptotic cluster standing waves corresponding to spherical wall boundary conditions. We find that this approach of extracting scattering wave functions from the adiabatic Hamiltonian to be less sensitive to small stochastic and systematic errors as compared with using periodic-box energy levels.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Numerical solution of stochastic quantum master equations using stochastic interacting wave functions
    Mora, C. M.
    Fernandez, J.
    Biscay, R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 367 : 28 - 48
  • [22] Exact wave propagation analysis of lattice structures based on the dynamic stiffness method and the Wittrick-Williams algorithm
    Liu, Xiang
    Lu, Zhaoming
    Adhikari, Sondipon
    Li, YingLi
    Banerjee, J. Ranjan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 174
  • [23] Solution of wide band scattering problems using the characteristic basis function method
    De Gregorio, M.
    Tiberi, G.
    Monorchio, A.
    Mittra, R.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2012, 6 (01) : 60 - 66
  • [24] COMPARISON BETWEEN CONSISTENT COUPLED-MODE SYSTEM AND EIGENFUNCTION MATCHING METHOD FOR SOLVING WATER WAVE SCATTERING
    Tsai, Chia-Cheng
    Chou, Wan-Rong
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2015, 23 (06): : 870 - 881
  • [25] Free vibration analysis of functionally graded beams using complementary functions method
    Celebi, Kerimcan
    Yarimpabuc, Durmus
    Tutuncu, Naki
    ARCHIVE OF APPLIED MECHANICS, 2018, 88 (05) : 729 - 739
  • [26] Numerical prediction of effective thermal conductivity of ceramic fiber board using lattice Boltzmann method
    Hussain, Mazhar
    Tao, Wen-Quan
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2018, 74 (06) : 1285 - 1300
  • [27] Electron transport in graphene/graphene side-contact junction by plane-wave multiple-scattering method
    Li, Xiang-Guo
    Chu, Iek-Heng
    Zhang, X. -G.
    Cheng, Hai-Ping
    PHYSICAL REVIEW B, 2015, 91 (19):
  • [28] Low-energy S-wave scattering of H plus e- by a Lagrange-mesh method
    Servais, Jean
    Dohet-Eraly, Jeremy
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [29] Prediction of dynamic modulus of asphalt mixture using micromechanical method with radial distribution functions
    Zhang, Jiupeng
    Fan, Zepeng
    Wang, Hao
    Sun, Wei
    Pei, Jianzhong
    Wang, Dawei
    MATERIALS AND STRUCTURES, 2019, 52 (02)
  • [30] Transient conduction simulation of a nano-scale hotspot using finite volume lattice Boltzmann method
    Samian, R. S.
    Abbassi, A.
    Ghazanfarian, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (04):