Trajectory Tracking Control for A Class of Nonholonomic Mechanical Systems

被引:0
作者
Sun Wei [1 ]
Wu Yu-Qiang [2 ]
Sun Zong-Yao [2 ]
机构
[1] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
[2] Qufu Normal Univ, Inst Automat, Qufu 273165, Peoples R China
来源
2013 32ND CHINESE CONTROL CONFERENCE (CCC) | 2013年
关键词
Tracking control; nonholonomic mechanical systems; affine contraints; Lyapunov method; FEEDBACK STABILIZATION; MOTION/FORCE CONTROL; MOBILE ROBOT; UNCERTAINTIES; PARAMETER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates trajectory tracking control for nonholonomic mechanical systems with affine constraints. To achieve the asymptotic tracking result, by flexibly using the Algebra processing technique, reduce the number of state variables, and then an integral feedback compensation strategy is used to identify the dynamic friction. The controller guarantees that the configuration state of the system semi-global asymptotically tracks the desired trajectory. Finally, an example is given to demonstrate the effectiveness of the control scheme.
引用
收藏
页码:391 / 395
页数:5
相关论文
共 22 条
[1]  
Brockett R. W., 1983, DIFFERENTIAL GEOMETR
[2]   Robust tracking designs for both holonomic and nonholonomic constrained mechanical systems: Adaptive fuzzy approach [J].
Chang, YC ;
Chen, BS .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (01) :46-66
[3]  
Dawson D.M., 1998, NONLINEAR CONTROL EL
[4]   Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties [J].
Dong, W ;
Kuhnert, KD .
IEEE TRANSACTIONS ON ROBOTICS, 2005, 21 (02) :261-266
[5]   On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty [J].
Dong, WJ .
AUTOMATICA, 2002, 38 (09) :1475-1484
[6]  
Dong WJ, 2001, IEEE T AUTOMAT CONTR, V46, P450, DOI 10.1109/9.911421
[7]  
Dong WJ, 1999, INT J ROBUST NONLIN, V9, P905, DOI 10.1002/(SICI)1099-1239(199911)9:13<905::AID-RNC443>3.0.CO
[8]  
2-1
[9]   Adaptive tracking control of a nonholonomic mobile robot [J].
Fukao, T ;
Nakagawa, H ;
Adachi, N .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2000, 16 (05) :609-615
[10]   Adaptive output feedback asymptotic stabilization of nonholonomic systems with uncertainties [J].
Ju, Guiling ;
Wu, Yuqiang ;
Sun, Weihai .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5106-5117