A NEW METHOD FOR STRONG-WEAK LINEAR BILEVEL PROGRAMMING PROBLEM

被引:13
|
作者
Zheng, Yue [1 ]
Wan, Zhongping [2 ]
Jia, Shihui [3 ]
Wang, Guangmin [4 ]
机构
[1] Huanggang Normal Univ, Coll Math & Phys, Huanggang 438000, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Wuhan Univ Sci & Technol, Sch Sci, Wuhan 430081, Peoples R China
[4] China Univ Geosci, Sch Econom & Management, Wuhan 430074, Peoples R China
基金
美国国家科学基金会;
关键词
Bilevel programming; optimistic formulation; pessimistic formulation; partial cooperation; penalty method; critical point; PENALTY-FUNCTION APPROACH; OPTIMALITY CONDITIONS; STACKELBERG PROBLEM; OPTIMIZATION; EXISTENCE;
D O I
10.3934/jimo.2015.11.529
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We first propose an exact penalty method to solve strong-weak linear bilevel programming problem (for short, SWLBP) for every fixed cooperation degree from the follower. Then, we prove that the solution of penalized problem is also that of the original problem under some conditions. Furthermore, we give some properties of the optimal value function (as a function of the follower's cooperation degree) of SWLBP. Finally, we develop a method to acquire the critical points of the optimal value function without enumerating all values of the cooperation degree from the follower, and thus this function is also achieved. Numerical results show that the proposed methods are feasible.
引用
收藏
页码:529 / 547
页数:19
相关论文
共 50 条
  • [1] On complexity of finding strong-weak solutions in bilevel linear programming
    Lagos, Tomas
    Prokopyev, Oleg A.
    OPERATIONS RESEARCH LETTERS, 2023, 51 (06) : 612 - 617
  • [2] An exact penalty method for weak linear bilevel programming problem
    Zheng Y.
    Wan Z.
    Sun K.
    Zhang T.
    J. Appl. Math. Comp., 1-2 (41-49): : 41 - 49
  • [3] A New Variant of Penalty Method for Weak Linear Bilevel Programming Problems
    LIU June
    HONG Yunfei
    ZHENG Yue
    WuhanUniversityJournalofNaturalSciences, 2018, 23 (04) : 328 - 332
  • [4] Strong-Weak Nonlinear Bilevel Problems: Existence of Solutions in a Sequential Setting
    Abdelmalek Aboussoror
    Samir Adly
    Fatima Ezzahra Saissi
    Set-Valued and Variational Analysis, 2017, 25 : 113 - 132
  • [5] Strong-Weak Nonlinear Bilevel Problems: Existence of Solutions in a Sequential Setting
    Aboussoror, Abdelmalek
    Adly, Samir
    Saissi, Fatima Ezzahra
    SET-VALUED AND VARIATIONAL ANALYSIS, 2017, 25 (01) : 113 - 132
  • [6] Characterization of solutions of strong-weak convex programming problems
    Dudov, S. I.
    Osiptsev, M. A.
    SBORNIK MATHEMATICS, 2021, 212 (06) : 782 - 809
  • [7] Weak and strong stationarity in generalized bilevel programming and bilevel optimal control
    Mehlitz, Patrick
    Wachsmuth, Gerd
    OPTIMIZATION, 2016, 65 (05) : 907 - 935
  • [8] The bilevel linear/linear fractional programming problem
    Calvete, HI
    Galé, C
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 114 (01) : 188 - 197
  • [9] Discrete linear bilevel programming problem
    Departamento de Matemática, Universidade de Coimbra, Coimbra, Portugal
    不详
    不详
    J. Optim. Theory Appl., 3 (597-614):
  • [10] Discrete linear bilevel programming problem
    Vicente, L
    Savard, G
    Judice, J
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (03) : 597 - 614