Heteroclinic connections in plane Couette flow

被引:68
作者
Halcrow, J. [1 ]
Gibson, J. F. [1 ]
Cvitanovic, P. [1 ]
Viswanath, D. [2 ]
机构
[1] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
TRANSITION; TURBULENCE; BOUNDARY;
D O I
10.1017/S0022112008005065
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Plane Couette flow transitions to turbulence at Re approximate to 325 even though the laminar solution with a linear profile is linearly stable for all Re (Reynolds number). One starting point for understanding this subcritical transition is the existence of invariant sets in the state space of the Navier-Stokes equation, such as upper and lower branch equilibria and periodic and relative periodic solutions, that are distinct from the laminar solution. This article reports several heteroclinic connections between such objects and briefly describes a numerical method for locating heteroclinic connections. We show that the nature of streaks and streamwise rolls can change significantly along a heteroclinic connection.
引用
收藏
页码:365 / 376
页数:12
相关论文
共 39 条
[1]  
Abraham RH., 1992, Dynamics: the geometry of behavior
[2]   Mode competition of rotating waves in reflection-symmetric Taylor-Couette flow [J].
Abshagen, J ;
Lopez, JM ;
Marques, F ;
Pfister, G .
JOURNAL OF FLUID MECHANICS, 2005, 540 :269-299
[3]   Symmetry breaking via global bifurcations of modulated rotating waves in hydrodynamics [J].
Abshagen, J ;
Lopez, JM ;
Marques, F ;
Pfister, G .
PHYSICAL REVIEW LETTERS, 2005, 94 (07)
[4]  
[Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
[5]  
[Anonymous], CHANNELFLOW SPECTRAL
[6]   Discontinuous transition to spatiotemporal intermittency in plane Couette flow [J].
Bottin, S ;
Daviaud, F ;
Manneville, P ;
Dauchot, O .
EUROPHYSICS LETTERS, 1998, 43 (02) :171-176
[7]   Spatiotemporal chaos in terms of unstable recurrent patterns [J].
Christiansen, F ;
Cvitanovic, P ;
Putkaradze, V .
NONLINEARITY, 1997, 10 (01) :55-70
[8]   Tertiary and quaternary solutions for plane Couette flow [J].
Clever, RM ;
Busse, FH .
JOURNAL OF FLUID MECHANICS, 1997, 344 :137-153
[9]   FINITE-AMPLITUDE PERTURBATION AND SPOTS GROWTH-MECHANISM IN PLANE COUETTE-FLOW [J].
DAUCHOT, O ;
DAVIAUD, F .
PHYSICS OF FLUIDS, 1995, 7 (02) :335-343
[10]   Transition in pipe flow: the saddle structure on the boundary of turbulence [J].
Duguet, Y. ;
Willis, A. P. ;
Kerswell, R. R. .
JOURNAL OF FLUID MECHANICS, 2008, 613 (255-274) :255-274