Morrey-Type Spaces on Gauss Measure Spaces and Boundedness of Singular Integrals

被引:19
作者
Liu, Liguang [2 ]
Sawano, Yoshihiro [3 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
Locally doubling measure space; Gauss measure space; Morrey space; Campanato space; Riesz transform; Singular integral; MAXIMAL-FUNCTION; BMO; OPERATORS; H-1; EXTENSIONS;
D O I
10.1007/s12220-012-9362-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors introduce Morrey-type spaces on the locally doubling metric measure spaces, which means that the underlying measure enjoys the doubling and the reverse doubling properties only on a class of admissible balls, and then obtain the boundedness of the local Hardy-Littlewood maximal operator and the local fractional integral operator on such Morrey-type spaces. These Morrey-type spaces on the Gauss measure space are further proved to be naturally adapted to singular integrals associated with the Ornstein-Uhlenbeck operator. To be precise, by means of the locally doubling property and the geometric properties of the Gauss measure, the authors establish the equivalence between Morrey-type spaces and Campanato-type spaces on the Gauss measure space, and the boundedness for a class of singular integrals associated with the Ornstein-Uhlenbeck operator (including Riesz transforms of any order) on Morrey-type spaces over the Gauss measure space.
引用
收藏
页码:1007 / 1051
页数:45
相关论文
共 40 条
[1]   Morrey spaces in harmonic analysis [J].
Adams, David R. ;
Xiao, Jie .
ARKIV FOR MATEMATIK, 2012, 50 (02) :201-230
[2]   REGULARITY OF MORREY COMMUTATORS [J].
Adams, David R. ;
Xiao, Jie .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (09) :4801-4818
[3]   Morrey Potentials and Harmonic Maps [J].
Adams, David R. ;
Xiao, Jie .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (02) :439-456
[4]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[5]  
[Anonymous], 1990, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[6]  
[Anonymous], 1971, Lecture Notes in Mathematics
[7]  
[Anonymous], 1994, Rev. Mat. Iberoamericana, DOI [10.4171/RMI/152, DOI 10.4171/RMI/152]
[8]  
[Anonymous], 1996, J. Fourier Anal. Appl., DOI [10.1007/s00041-001-4044-1, DOI 10.1007/S00041-001-4044-1]
[9]  
Campanato S., 1963, RIC MAT, V12, P67
[10]   H1 AND BMO FOR CERTAIN LOCALLY DOUBLING METRIC MEASURE SPACES OF FINITE MEASURE [J].
Carbonaro, Andrea ;
Mauceri, Giancarlo ;
Meda, Stefano .
COLLOQUIUM MATHEMATICUM, 2010, 118 (01) :13-41