Abnormal geodesics in 2D-Zermelo navigation problems in the case of revolution and the fan shape of the small time balls

被引:1
作者
Bonnard, B. [2 ,4 ]
Cots, O. [1 ]
Gergaud, J. [1 ]
Wembe, B. [1 ,3 ]
机构
[1] Toulouse Univ, INP ENSEEIHT IRIT, UMR CNRS 5505, 2 Rue Camichel, F-31071 Toulouse, France
[2] Inria, 2004 Route Lucioles, F-06902 Sophia Antipolis, France
[3] Toulouse Univ, IRIT UPS, UMR CNRS 5505, 118 Route Narbonne, F-31062 Toulouse, France
[4] Inst Math Bourgogne, UMR CNRS 5584, 9 Ave Alain Savary, F-21078 Dijon, France
关键词
Geometric optimal control; Zermelo navigation problems; Abnormal geodesics; Singularity of the value function in the  abnormal direction; SINGULARITIES;
D O I
10.1016/j.sysconle.2022.105140
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, based on two case studies, we discuss the role of abnormal geodesics in planar Zermelo navigation problems. Such curves are limit curves of the accessibility set, in the domain where the current is strong. The problem is set in the frame of geometric time optimal control, where the control is the heading angle of the ship and in this context, abnormal curves are shown to separate time minimal curves from time maximal curves and are both small-time minimizing and maximizing. We describe the small-time minimal balls. For bigger time, a cusp singularity can occur in the abnormal direction, which corresponds to a conjugate point along the non-smooth image. It is interpreted in terms of the regularity property of the time minimal value function. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 17 条
  • [1] Arnold V.I., 1998, APPL MATH SCI, V125, P376
  • [2] Bao D, 2004, J DIFFER GEOM, V66, P377
  • [3] Bolsinov A.V., 2004, INTEGRABLE HAMILTONI, P724
  • [4] THEORY OF SINGULARITIES OF INPUT-OUTPUT APPLICATION AND OPTIMALITY OF SINGULAR TRAJECTORIES IN THE OPTIMAL-TIME PROBLEM
    BONNARD, B
    KUPKA, I
    [J]. FORUM MATHEMATICUM, 1993, 5 (02) : 111 - 159
  • [5] Bonnard B., 2021, HAL03310348
  • [6] Bonnard B., 2003, MATH APPLIC, V40
  • [7] A Zermelo navigation problem with a vortex singularity
    Bonnard, Bernard
    Cots, Olivier
    Wembe, Boris
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [8] Bryson A. E., 1975, Applied optimal control: optimization, estimation, and control, P496
  • [9] Semiconcavity results for optimal control problems admitting no singular minimizing controls
    Cannarsa, P.
    Rifford, L.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (04): : 773 - 802
  • [10] Cannarsa P., 2004, PROGR NONLINEAR DIFF, V58, P304