Total Roman Domination Number of Rooted Product Graphs

被引:6
作者
Cabrera Martinez, Abel [1 ]
Cabrera Garcia, Suitberto [2 ]
Carrion Garcia, Andres [2 ]
Hernandez Mira, Frank A. [3 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
[2] Univ Politecn Valencia, Dept Estadist & Invest Operat Aplicadas & Calidad, Camino Vera S-N, Valencia 46022, Spain
[3] Univ Autonoma Guerrero, Ctr Ciencias Desarrollo Reg, Privada Laurel 13, Acapulco 39640, Guerrero, Mexico
关键词
total Roman domination; total domination; rooted product graph;
D O I
10.3390/math8101850
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with no isolated vertex and f:V(G)->{0,1,2} a function. If f satisfies that every vertex in the set {v is an element of V(G):f(v)=0} is adjacent to at least one vertex in the set {v is an element of V(G):f(v)=2}, and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertex, then we say that f is a total Roman dominating function on G. The minimum weight omega(f)= n-ary sumation v is an element of V(G)f(v) among all total Roman dominating functions f on G is the total Roman domination number of G. In this article we study this parameter for the rooted product graphs. Specifically, we obtain closed formulas and tight bounds for the total Roman domination number of rooted product graphs in terms of domination invariants of the factor graphs involved in this product.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 22 条
[1]   TOTAL ROMAN DOMINATION IN GRAPHS [J].
Ahangar, Hossein Abdollahzadeh ;
Henning, Michael A. ;
Samodivkin, Vladimir ;
Yero, Ismael G. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) :501-517
[2]   ON THE TOTAL ROMAN DOMINATION IN TREES [J].
Amjadi, Jafar ;
Sheikholeslami, Seyed Mahmoud ;
Soroudi, Marzieh .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (02) :519-532
[3]  
Cabrera Martinez A., 2020, CLOSED FORMULAS TOTA
[4]   Dominating the Direct Product of Two Graphs through Total Roman Strategies [J].
Cabrera Martinez, Abel ;
Kuziak, Dorota ;
Peterin, Iztok ;
Yero, Ismael G. .
MATHEMATICS, 2020, 8 (09)
[5]   Further Results on the Total Roman Domination in Graphs [J].
Cabrera Martinez, Abel ;
Cabrera Garcia, Suitberto ;
Carrion Garcia, Andres .
MATHEMATICS, 2020, 8 (03)
[6]   Total Roman domination in the lexicographic product of graphs [J].
Campanelli, Nicolas ;
Kuziak, Dorota .
DISCRETE APPLIED MATHEMATICS, 2019, 263 :88-95
[7]   EXTREMAL PROBLEMS FOR ROMAN DOMINATION [J].
Chambers, Erin W. ;
Kinnersley, Bill ;
Prince, Noah ;
West, Douglas B. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) :1575-1586
[8]   ROMAN AND TOTAL DOMINATION [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
QUAESTIONES MATHEMATICAE, 2015, 38 (06) :749-757
[9]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[10]  
Dorbec P., 2006, Discussiones Mathematicae Graph Theory, V26, P103, DOI 10.7151/dmgt.1305