Exact solution of a 1D quantum many-body system with momentum-dependent interactions

被引:24
作者
Grosse, H
Langmann, E
Paufler, C
机构
[1] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[2] KTH, Dept Phys, SE-10691 Stockholm, Sweden
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 16期
关键词
D O I
10.1088/0305-4470/37/16/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a ID quantum many-body model of distinguishable particles with local, momentum-dependent two-body interactions. We show that the restriction of this model to fermions corresponds to the non-relativistic limit of the massive Thirring model. This fermion model can be solved exactly by a mapping to the 1D boson gas with inverse coupling constant. We provide evidence that this mapping is the non-relativistic limit of the duality between the massive Thirring model and the quantum sine-Gordon model. We show that the generalized model with distinguishable particles remains exactly solvable by the (coordinate) Bethe ansatz. Our solution provides a generalization of the above mentioned boson-fermion duality to particles with arbitrary exchange statistics characterized by any irreducible representation of the permutation group.
引用
收藏
页码:4579 / 4592
页数:14
相关论文
共 50 条
[31]   Solution of a Minimal Model for Many-Body Quantum Chaos [J].
Chan, Amos ;
De Luca, Andrea ;
Chalker, J. T. .
PHYSICAL REVIEW X, 2018, 8 (04)
[32]   Efficient tomography of a quantum many-body system [J].
B. P. Lanyon ;
C. Maier ;
M. Holzäpfel ;
T. Baumgratz ;
C. Hempel ;
P. Jurcevic ;
I. Dhand ;
A. S. Buyskikh ;
A. J. Daley ;
M. Cramer ;
M. B. Plenio ;
R. Blatt ;
C. F. Roos .
Nature Physics, 2017, 13 :1158-1162
[33]   Efficient tomography of a quantum many-body system [J].
Lanyon, B. P. ;
Maier, C. ;
Holzaepfel, M. ;
Baumgratz, T. ;
Hempel, C. ;
Jurcevic, P. ;
Dhand, I. ;
Buyskikh, A. S. ;
Daley, A. J. ;
Cramer, M. ;
Plenio, M. B. ;
Blatt, R. ;
Roos, C. F. .
NATURE PHYSICS, 2017, 13 (12) :1158-+
[34]   Free fall of a quantum many-body system [J].
Colcelli, A. ;
Mussardo, G. ;
Sierra, G. ;
Trombettoni, A. .
AMERICAN JOURNAL OF PHYSICS, 2022, 90 (11) :833-840
[35]   Eigenstate Localization in a Many-Body Quantum System [J].
Yin, Chao ;
Nandkishore, Rahul ;
Lucas, Andrew .
PHYSICAL REVIEW LETTERS, 2024, 133 (13)
[36]   Subdynamics in a many-body system of quantum particles [J].
Los, Victor F. .
PHYSICAL REVIEW E, 2024, 110 (06)
[37]   On parametric resonance in quantum many-body system [J].
Tsue, Y ;
da Providência, J ;
Kuriyama, A ;
Yamamura, M .
PROGRESS OF THEORETICAL PHYSICS, 2006, 115 (01) :129-141
[38]   Recurrences in an isolated quantum many-body system [J].
Rauer, Bernhard ;
Erne, Sebastian ;
Schweigler, Thomas ;
Cataldini, Federica ;
Tajik, Mohammadamin ;
Schmiedmayer, Jorg .
SCIENCE, 2018, 360 (6386) :307-+
[39]   Systematic Construction of Scarred Many-Body Dynamics in 1D Lattice Models [J].
Bull, Kieran ;
Martin, Ivar ;
Papic, Z. .
PHYSICAL REVIEW LETTERS, 2019, 123 (03)
[40]   Focusing Quantum Many-body Dynamics: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrodinger Equation [J].
Chen, Xuwen ;
Holmer, Justin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (02) :631-676