Exact solution of a 1D quantum many-body system with momentum-dependent interactions

被引:24
作者
Grosse, H
Langmann, E
Paufler, C
机构
[1] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[2] KTH, Dept Phys, SE-10691 Stockholm, Sweden
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 16期
关键词
D O I
10.1088/0305-4470/37/16/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a ID quantum many-body model of distinguishable particles with local, momentum-dependent two-body interactions. We show that the restriction of this model to fermions corresponds to the non-relativistic limit of the massive Thirring model. This fermion model can be solved exactly by a mapping to the 1D boson gas with inverse coupling constant. We provide evidence that this mapping is the non-relativistic limit of the duality between the massive Thirring model and the quantum sine-Gordon model. We show that the generalized model with distinguishable particles remains exactly solvable by the (coordinate) Bethe ansatz. Our solution provides a generalization of the above mentioned boson-fermion duality to particles with arbitrary exchange statistics characterized by any irreducible representation of the permutation group.
引用
收藏
页码:4579 / 4592
页数:14
相关论文
共 50 条
[21]   Macroscopic quantum control of exact many-body coherent states [J].
W. H. Hai ;
Q. Xie ;
S. G. Rong .
The European Physical Journal D, 2011, 61 :431-435
[22]   Macroscopic quantum control of exact many-body coherent states [J].
Hai, W. H. ;
Xie, Q. ;
Rong, S. G. .
EUROPEAN PHYSICAL JOURNAL D, 2011, 61 (02) :431-435
[23]   Exact many-body scars and their stability in constrained quantum chains [J].
Surace, Federica Maria ;
Votto, Matteo ;
Lazo, Eduardo Gonzalez ;
Silva, Alessandro ;
Dalmonte, Marcello ;
Giudici, Giuliano .
PHYSICAL REVIEW B, 2021, 103 (10)
[24]   DIMENSIONALITY DEPENDENCE OF DYNAMIC CORRELATIONS - EXACT RESULTS FROM A QUANTUM MANY-BODY SYSTEM [J].
SEN, S .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1993, 441 (1911) :169-179
[25]   Understanding quantum work in a quantum many-body system [J].
Wang, Qian ;
Quan, H. T. .
PHYSICAL REVIEW E, 2017, 95 (03)
[26]   Exact BCS stochastic schemes for a time-dependent many-body fermionic system [J].
Montina, A ;
Castin, Y .
PHYSICAL REVIEW A, 2006, 73 (01)
[27]   Quantum many-body interactions in digital oxide superlattices [J].
Monkman, Eric J. ;
Adamo, Carolina ;
Mundy, Julia A. ;
Shai, Daniel E. ;
Harter, John W. ;
Shen, Dawei ;
Burganov, Bulat ;
Muller, David A. ;
Schlom, Darrell G. ;
Shen, Kyle M. .
NATURE MATERIALS, 2012, 11 (10) :855-859
[28]   Quantum many-body interactions in the presence of disordered potentials [J].
Ogul, Riza .
TURKISH JOURNAL OF PHYSICS, 2018, 42 (02) :191-197
[29]   Many-body spin interactions in semiconductor quantum wires [J].
Reilly, DJ ;
Facer, GR ;
Dzurak, AS ;
Kane, BE ;
Clark, RG ;
Stiles, PJ ;
O'Brien, JL ;
Lumpkin, NE ;
Pfeiffer, LN ;
West, KW .
AUSTRALIAN JOURNAL OF PHYSICS, 2000, 53 (04) :543-552
[30]   Quantum many-body interactions in digital oxide superlattices [J].
Eric J. Monkman ;
Carolina Adamo ;
Julia A. Mundy ;
Daniel E. Shai ;
John W. Harter ;
Dawei Shen ;
Bulat Burganov ;
David A. Muller ;
Darrell G. Schlom ;
Kyle M. Shen .
Nature Materials, 2012, 11 :855-859