Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation

被引:40
|
作者
Kim, Heejin [1 ,2 ]
Lee, Won-Heong [1 ,2 ]
Galazka, Jonathan M. [3 ,4 ]
Cate, Jamie H. D. [3 ,4 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[2] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
关键词
Cellulosic ethanol; Cellodextrin transporters; Intracellular beta-glucosidase; Engineered S. cerevisiae; BETA-GLUCOSIDASE; SECRETION; KINETICS;
D O I
10.1007/s00253-013-5339-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Saccharomyces cerevisiae can be engineered to ferment cellodextrins produced by cellulases as a product of cellulose hydrolysis. Direct fermentation of cellodextrins instead of glucose is advantageous because glucose inhibits cellulase activity and represses the fermentation of non-glucose sugars present in cellulosic hydrolyzates. To facilitate cellodextrin utilization by S. cerevisiae, a fungal cellodextrin-utilizing pathway from Neurospora crassa consisting of a cellodextrin transporter and a cellodextrin hydrolase has been introduced into S. cerevisiae. Two cellodextrin transporters (CDT-1 and CDT-2) were previously identified in N. crassa, but their kinetic properties and efficiency for cellobiose fermentation have not been studied in detail. In this study, CDT-1 and CDT-2, which are hypothesized to transport cellodextrin with distinct mechanisms, were introduced into S. cerevisiae along with an intracellular beta-glucosidase (GH1-1). Cellobiose transport assays with the resulting strains indicated that CDT-1 is a proton symporter while CDT-2 is a simple facilitator. A strain expressing CDT-1 and GH1-1 (DCDT-1G) showed faster cellobiose fermentation than the strain expressing CDT-2 and GH1-1 (DCDT-2G) under various culture conditions with different medium compositions and aeration levels. While CDT-2 is expected to have energetic benefits, the expression levels and kinetic properties of CDT-1 in S. cerevisiae appears to be optimum for cellobiose fermentation. These results suggest CDT-1 is a more effective cellobiose transporter than CDT-2 for engineering S. cerevisiae to ferment cellobiose.
引用
收藏
页码:1087 / 1094
页数:8
相关论文
共 34 条
  • [1] Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation
    Heejin Kim
    Won-Heong Lee
    Jonathan M. Galazka
    Jamie H. D. Cate
    Yong-Su Jin
    Applied Microbiology and Biotechnology, 2014, 98 : 1087 - 1094
  • [2] Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters
    Ha, Suk-Jin
    Galazka, Jonathan M.
    Oh, Eun Joong
    Kordic, Vesna
    Kim, Heejin
    Jin, Yong-Su
    Cate, Jamie H. D.
    METABOLIC ENGINEERING, 2013, 15 : 134 - 143
  • [3] Screening and Engineering Yeast Transporters to Improve Cellobiose Fermentation by Recombinant Saccharomyces cerevisiae
    Kretzer, Leonardo G.
    Knychala, Marilia M.
    da Silva, Lucca C.
    da Fontoura, Isadora C. C.
    Leandro, Maria Jose
    Fonseca, Cesar
    Verstrepen, Kevin J.
    Stambuk, Boris U.
    FERMENTATION-BASEL, 2024, 10 (09):
  • [4] Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae
    Bae, Yi-Hyun
    Kang, Kyeong-Hyeon
    Jin, Yong-Su
    Seo, Jin-Ho
    JOURNAL OF BIOTECHNOLOGY, 2014, 169 : 34 - 41
  • [5] Cellobionic acid utilization: from Neurospora crassa to Saccharomyces cerevisiae
    Li, Xin
    Chomvong, Kulika
    Yu, Vivian Yaci
    Liang, Julie M.
    Lin, Yuping
    Cate, Jamie H. D.
    BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
  • [6] Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae
    Aeling, Kimberly A.
    Salmon, Kirsty A.
    Laplaza, Jose M.
    Li, Ling
    Headman, Jennifer R.
    Hutagalung, Alex H.
    Picataggio, Stephen
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (11) : 1597 - 1604
  • [7] Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
    Ha, Suk-Jin
    Galazka, Jonathan M.
    Kim, Soo Rin
    Choi, Jin-Ho
    Yang, Xiaomin
    Seo, Jin-Ho
    Glass, N. Louise
    Cate, Jamie H. D.
    Jin, Yong-Su
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (02) : 504 - 509
  • [8] Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered Saccharomyces cerevisiae Fermenting Cellobiose
    Lee, Won-Heong
    Jin, Yong-Su
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 31 (07) : 1035 - 1043
  • [9] Cellobiose fermentation by Saccharomyces cerevisiae: Comparative analysis of intra versus extracellular sugar hydrolysis
    Casa-Villegas, Mary
    Polaina, Julio
    Marin-Navarro, Julia
    PROCESS BIOCHEMISTRY, 2018, 75 : 59 - 67
  • [10] PHB production from cellobiose with Saccharomyces cerevisiae
    Ylinen, Anna
    de Ruijter, Jorg C.
    Jouhten, Paula
    Penttila, Merja
    MICROBIAL CELL FACTORIES, 2022, 21 (01)