LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering

被引:115
|
作者
Specht, Alicia T. [1 ]
Li, Jun [1 ]
机构
[1] Univ Notre Dame, Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btw729
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
To construct gene co-expression networks based on single-cell RNA-Sequencing data, we present an algorithm called LEAP, which utilizes the estimated pseudotime of the cells to find gene co-expression that involves time delay. Availability and Implementation: R package LEAP available on CRAN Contact: jun.li@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:764 / 766
页数:3
相关论文
共 50 条
  • [1] Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression
    Nassiri, Isar
    Kwok, Andrew J.
    Bhandari, Aneesha
    Bull, Katherine R.
    Garner, Lucy C.
    Klenerman, Paul
    Webber, Caleb
    Parkkinen, Laura
    Lee, Angela W.
    Wu, Yanxia
    Fairfax, Benjamin
    Knight, Julian C.
    Buck, David
    Piazza, Paolo
    BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [2] Isoform-level gene expression patterns in single-cell RNA-sequencing data
    Trung Nghia Vu
    Wills, Quin F.
    Kalari, Krishna R.
    Niu, Nifang
    Wang, Liewei
    Pawitan, Yudi
    Rantalainen, Mattias
    BIOINFORMATICS, 2018, 34 (14) : 2392 - 2400
  • [3] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Jong Kyoung Kim
    John C Marioni
    Genome Biology, 14
  • [4] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Kim, Jong Kyoung
    Marioni, John C.
    GENOME BIOLOGY, 2013, 14 (01): : 1 - 12
  • [5] Constructing Simulation Data with Dependence Structure for Unreliable Single-Cell RNA-Sequencing Data Using Copulas
    Fuetterer, Cornelia
    Schollmeyer, Georg
    Augustin, Thomas
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 216 - 224
  • [6] A sparse Bayesian factor model for the construction of gene co-expression networks from single-cell RNA sequencing count data
    Michael Sekula
    Jeremy Gaskins
    Susmita Datta
    BMC Bioinformatics, 21
  • [7] A sparse Bayesian factor model for the construction of gene co-expression networks from single-cell RNA sequencing count data
    Sekula, Michael
    Gaskins, Jeremy
    Datta, Susmita
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [8] Cell-type-specific co-expression inference from single cell RNA-sequencing data
    Chang Su
    Zichun Xu
    Xinning Shan
    Biao Cai
    Hongyu Zhao
    Jingfei Zhang
    Nature Communications, 14
  • [9] Cell-type-specific co-expression inference from single cell RNA-sequencing data
    Su, Chang
    Xu, Zichun
    Shan, Xinning
    Cai, Biao
    Zhao, Hongyu
    Zhang, Jingfei
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [10] bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data
    Tang, Wenhao
    Bertaux, Francois
    Thomas, Philipp
    Stefanelli, Claire
    Saint, Malika
    Marguerat, Samuel
    Shahrezaei, Vahid
    BIOINFORMATICS, 2020, 36 (04) : 1174 - 1181