On non-ergodic convergence rate of the operator splitting method for a class of variational inequalities

被引:2
作者
Kou, X. P. [1 ]
Li, S. J. [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational inequalities; Operator splitting method; Convergence rate; PROXIMAL POINT ALGORITHM;
D O I
10.1007/s11590-015-0986-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we investigate an operator splitting method for solving variational inequalities with partially unknown mappings. According to the global convergence of the operator splitting method, which has been established by Han et al. (Numer Math 111:207-237, 2008), we get the O(1/t) convergence rate of the operator splitting method in non-ergodic sense.
引用
收藏
页码:71 / 80
页数:10
相关论文
共 50 条
[41]   Weak Convergence of an Iterative Method for Pseudomonotone Variational Inequalities and Fixed-Point Problems [J].
L. C. Ceng ;
M. Teboulle ;
J. C. Yao .
Journal of Optimization Theory and Applications, 2010, 146 :19-31
[42]   Weak Convergence of an Iterative Method for Pseudomonotone Variational Inequalities and Fixed-Point Problems [J].
Ceng, L. C. ;
Teboulle, M. ;
Yao, J. C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (01) :19-31
[43]   A Kantorovich-type convergence analysis of the Newton–Josephy method for solving variational inequalities [J].
Ioannis K. Argyros ;
Saïd Hilout .
Numerical Algorithms, 2010, 55 :447-466
[44]   On the linear convergence rate of a relaxed forward-backward splitting method [J].
Guo, Ke .
OPTIMIZATION, 2021, 70 (5-6) :1161-1170
[45]   New Parallel Descent-like Method for Solving a Class of Variational Inequalities [J].
Z. K. Jiang ;
X. M. Yuan .
Journal of Optimization Theory and Applications, 2010, 145 :311-323
[46]   An inexact LQP alternating direction method for solving a class of structured variational inequalities [J].
Bnouhachem, Abdellah ;
Xu, M. H. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (03) :671-680
[47]   New Parallel Descent-like Method for Solving a Class of Variational Inequalities [J].
Jiang, Z. K. ;
Yuan, X. M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 145 (02) :311-323
[48]   On the convergence rate of the augmented Lagrangian-based parallel splitting method [J].
Wang, Kai ;
Desai, Jitamitra .
OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (02) :278-304
[49]   THE GLOWINSKI-LE TALLEC SPLITTING METHOD REVISITED: A GENERAL CONVERGENCE AND CONVERGENCE RATE ANALYSIS [J].
Ma, Yaonan ;
Liao, Li-Zhi .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (04) :1681-1711
[50]   A perturbed and inexact version of the auxiliary problem method for solving general variational inequalities with a multivalued operator [J].
Salmon, G ;
Nguyen, VH ;
Strodiot, JJ .
OPTIMIZATION, 2000, 48 :396-418