Effective contact model for geometry-independent conductance calculations in graphene

被引:7
作者
Bahamon, D. A. [1 ]
Neto, A. H. Castro
Pereira, Vitor M.
机构
[1] Natl Univ Singapore, Graphene Res Ctr, Singapore 117542, Singapore
关键词
GREENS-FUNCTION METHOD; TRANSPORT; SCATTERING;
D O I
10.1103/PhysRevB.88.235433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A geometry-independent effective model for the contact self-energies is proposed to calculate the quantum conductance of patterned graphene devices using Green's functions. A Corbino disk, being the simplest device where the contacts cannot be modeled as semi-infinite ribbons, is chosen to illustrate this approach. This system's symmetry allows an analytical solution against which numerical calculations on the lattice can be benchmarked. The effective model perfectly describes the conductance of Corbino disks at low-to-moderate energies, and is robust against the size of the annular device region, the number of atoms on the edge, external magnetic fields, or electronic disorder. The contact model considered here affords an expedient, flexible, and geometry-agnostic approach that easily allows the consideration of device dimensions encompassing several million atoms, and realistic radial dimensions of a few hundreds of nanometers.
引用
收藏
页数:8
相关论文
共 51 条
[1]   QUANTUM POINT CONTACTS IN MAGNETIC-FIELDS [J].
ANDO, T .
PHYSICAL REVIEW B, 1991, 44 (15) :8017-8027
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Tunable resonances due to vacancies in graphene nanoribbons [J].
Bahamon, D. A. ;
Pereira, A. L. C. ;
Schulz, P. A. .
PHYSICAL REVIEW B, 2010, 82 (16)
[4]   ELECTRICAL LINEAR-RESPONSE THEORY IN AN ARBITRARY MAGNETIC-FIELD - A NEW FERMI-SURFACE FORMATION [J].
BARANGER, HU ;
STONE, AD .
PHYSICAL REVIEW B, 1989, 40 (12) :8169-8193
[5]   Effects of Metallic Contacts on Electron Transport through Graphene [J].
Barraza-Lopez, Salvador ;
Vanevic, Mihajlo ;
Kindermann, Markus ;
Chou, M. Y. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[6]   Transport through normal-metal-graphene contacts [J].
Blanter, Ya. M. ;
Martin, Ivar .
PHYSICAL REVIEW B, 2007, 76 (15)
[7]   DIRECT CALCULATION OF TUNNELING CURRENT [J].
CAROLI, C ;
COMBESCO.R ;
NOZIERES, P ;
SAINTJAM.D .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (08) :916-&
[8]   Broken Symmetries, Zero-Energy Modes, and Quantum Transport in Disordered Graphene: From Supermetallic to Insulating Regimes [J].
Cresti, Alessandro ;
Ortmann, Frank ;
Louvet, Thibaud ;
Dinh Van Tuan ;
Roche, Stephan .
PHYSICAL REVIEW LETTERS, 2013, 110 (19)
[9]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[10]  
Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624