Probing cosmological parameters with the CMB: forecasts from Monte Carlo simulations

被引:197
作者
Perotto, Laurence
Lesgourgues, Julien
Hannestad, Steen
Tu, Huitzu
Wong, Yvonne Y. Y.
机构
[1] Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France
[2] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[3] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst Phys, D-80805 Munich, Germany
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2006年 / 10期
关键词
CMBR experiments; CMBR theory; cosmological neutrinos; gravitational lensing;
D O I
10.1088/1475-7516/2006/10/013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Fisher matrix formalism has in recent times become the standard method for predicting the precision with which various cosmological parameters can be extracted from future data. This approach is fast and generally returns accurate estimates for the parameter errors when the individual parameter likelihoods approximate a Gaussian distribution. However, where Gaussianity is not respected (due, for instance, to strong parameter degeneracies), the Fisher matrix formalism loses its reliability. In this paper, we compare the results of the Fisher matrix approach with those from Monte Carlo simulations. The latter method is based on the publicly available CosmoMC code, but uses synthetic realizations of data sets anticipated for future experiments. We focus on prospective cosmic microwave background (CMB) data from the Planck satellite, with or without CMB lensing information, and its implications for a minimal cosmological scenario with eight parameters and an extended model with eleven parameters. We show that in many cases, the projected sensitivities from the Fisher matrix and the Monte Carlo methods differ significantly, particularly for models with many parameters. Sensitivities to the neutrino mass and the dark matter fraction are especially susceptible to change.
引用
收藏
页数:19
相关论文
共 38 条
[1]   The Supernova Legacy Survey:: measurement of ΩM, ΩΛ and w from the first year data set [J].
Astier, P ;
Guy, J ;
Regnault, N ;
Pain, R ;
Aubourg, E ;
Balam, D ;
Basa, S ;
Carlberg, RG ;
Fabbro, S ;
Fouchez, D ;
Hook, IM ;
Howell, DA ;
Lafoux, H ;
Neill, JD ;
Palanque-Delabrouille, N ;
Perrett, K ;
Pritchet, CJ ;
Rich, J ;
Sullivan, M ;
Taillet, R ;
Aldering, G ;
Antilogus, P ;
Arsenijevic, V ;
Balland, C ;
Baumont, S ;
Bronder, J ;
Courtois, H ;
Ellis, RS ;
Filiol, M ;
Gonçalves, AC ;
Goobar, A ;
Guide, D ;
Hardin, D ;
Lusset, V ;
Lidman, C ;
McMahon, R ;
Mouchet, M ;
Mourao, A ;
Perlmutter, S ;
Ripoche, P ;
Tao, C ;
Walton, N .
ASTRONOMY & ASTROPHYSICS, 2006, 447 (01) :31-U31
[2]  
Bernardeau F, 1997, ASTRON ASTROPHYS, V324, P15
[3]   Current cosmological bounds on neutrino masses and relativistic relics [J].
Crotty, P ;
Lesgourgues, J ;
Pastor, S .
PHYSICAL REVIEW D, 2004, 69 (12)
[4]  
DODELSON S, 2005, ASTROPH0511500
[5]   Cosmic complementarity: Joint parameter estimation from cosmic microwave background experiments and redshift surveys [J].
Eisenstein, DJ ;
Hu, W ;
Tegmark, M .
ASTROPHYSICAL JOURNAL, 1999, 518 (01) :2-23
[6]   Global analysis of neutrino masses and mixing [J].
Fogli, G. L. ;
Lisi, E. ;
Marrone, A. ;
Palazzo, A. ;
Rotunno, A. M. .
INTERNATIONAL WORKSHOP ON NUCLEAR PHYSICS 27TH COURSE: NEUTRINOS IN COSMOLOGY, IN ASTRO, PARTICLE AND NUCLEAR PHYSICS, 2006, 57 (01) :71-78
[7]   Neutrinos in cosmology [J].
Hannestad, S. .
INTERNATIONAL WORKSHOP ON NUCLEAR PHYSICS 27TH COURSE: NEUTRINOS IN COSMOLOGY, IN ASTRO, PARTICLE AND NUCLEAR PHYSICS, 2006, 57 (01) :309-323
[8]   Cosmological mass limits on neutrinos, axions, and other light particles [J].
Hannestad, S ;
Raffelt, G .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2004, (04) :169-183
[9]   Can cosmology detect hierarchical neutrino masses? [J].
Hannestad, S .
PHYSICAL REVIEW D, 2003, 67 (08)
[10]  
Hannestad S, 2003, J COSMOL ASTROPART P