Tunable external cavity laser diode based on wavelength controlled self-assembled InAs quantum dots for swept-source optical coherence tomography applications at 1100 nm wavelength band

被引:5
作者
Ozaki, Nobuhiko [1 ,2 ]
Childs, David [1 ]
Boldin, Aleksandr [1 ]
Ikuno, Daigo [2 ]
Onoue, Katsuya [2 ]
Ohsato, Hirotaka [3 ]
Watanabe, Eiichiro [3 ]
Ikeda, Naoki [3 ]
Sugimoto, Yoshimasa [3 ]
Hogg, Richard [1 ]
机构
[1] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
[2] Wakayama Univ, Fac Syst Engn, 930 Sakaedani, Wakayama 6408510, Japan
[3] NIMS, Tsukuba, Ibaraki 3050047, Japan
来源
NOVEL IN-PLANE SEMICONDUCTOR LASERS XVIII | 2019年 / 10939卷
基金
英国工程与自然科学研究理事会;
关键词
quantum dot; external cavity; tunable laser; SS-OCT;
D O I
10.1117/12.2509984
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We fabricated and characterized a grating-coupled external cavity laser with gain chips including self-assembled InAs quantum dots (QDs) for swept-source optical coherence tomography applications. By controlling the emission wavelength of the self-assembled InAs QDs, tunable lasing at a wavelength band of 1-1.1 mu m was obtained, which represents an optimal balance between absorption and scattering in biological tissues. Straight and J-shaped edge-emitting ridge waveguides (RWGs) were fabricated on a GaAs-based waveguide layer containing four InAs QDs layers. A diffraction grating with the quasi-Littrow configuration was employed as an external cavity for the fiber-coupled diodes. Electroluminescence spectra from the QD-based diodes revealed that broadband amplified spontaneous emissions appeared in a J-shaped RWG, whereas Fabry-Perot lasing occurred in the straight RWG. The external cavity was then introduced for the diode with a J-shaped RWG, and a tuning range of 65 nm centered at approximately 1100 nm was obtained from the QD gain chip with the J-shaped RWG.
引用
收藏
页数:6
相关论文
共 9 条
[1]  
Brezinski M.E., 2006, OPTICAL COHERENCE TO
[2]   Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers [J].
Fedorova, Ksenia A. ;
Cataluna, Maria Ana ;
Krestnikov, Igor ;
Livshits, Daniil ;
Rafailov, Edik U. .
OPTICS EXPRESS, 2010, 18 (18) :19438-19443
[3]   GROWTH BY MOLECULAR-BEAM EPITAXY AND CHARACTERIZATION OF INAS/GAAS STRAINED-LAYER SUPERLATTICES [J].
GOLDSTEIN, L ;
GLAS, F ;
MARZIN, JY ;
CHARASSE, MN ;
LEROUX, G .
APPLIED PHYSICS LETTERS, 1985, 47 (10) :1099-1101
[4]   OPTICAL COHERENCE TOMOGRAPHY [J].
HUANG, D ;
SWANSON, EA ;
LIN, CP ;
SCHUMAN, JS ;
STINSON, WG ;
CHANG, W ;
HEE, MR ;
FLOTTE, T ;
GREGORY, K ;
PULIAFITO, CA ;
FUJIMOTO, JG .
SCIENCE, 1991, 254 (5035) :1178-1181
[5]   Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source [J].
Ozaki, Nobuhiko ;
Childs, David T. D. ;
Sarma, Jayanta ;
Roberts, Timothy S. ;
Yasuda, Takuma ;
Shibata, Hiroshi ;
Ohsato, Hirotaka ;
Watanabe, Eiichiro ;
Ikeda, Naoki ;
Sugimoto, Yoshimasa ;
Hogg, Richard A. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (08)
[6]   Integration of Emission-wavelength-controlled InAs Quantum Dots for Ultra-broadband Near-infrared Light Source [J].
Ozaki, Nobuhiko ;
Takeuchi, Koichi ;
Hino, Yuji ;
Nakatani, Yohei ;
Yasuda, Takuma ;
Ohkouchi, Shunsuke ;
Watanabe, Eiichiro ;
Ohsato, Hirotaka ;
Ikeda, Naoki ;
Sugimoto, Yoshimasa ;
Clarke, Edmund ;
Hogg, Richard A. .
NANOMATERIALS AND NANOTECHNOLOGY, 2014, 4
[7]   Near-infrared superluminescent diode using stacked self-assembled InAs quantum dots with controlled emission wavelengths [J].
Ozaki, Nobuhiko ;
Yasuda, Takuma ;
Ohkouchi, Shunsuke ;
Watanabe, Eiichiro ;
Ikeda, Naoki ;
Sugimoto, Yoshimasa ;
Hogg, Richard A. .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (04)
[8]  
PATTERSON M S, 1991, Lasers in Medical Science, V6, P379, DOI 10.1007/BF02042460
[9]   Self-Assembled Quantum Dot Based Swept Laser Source for Optical Coherence Tomography Applications [J].
Peyvast, N. ;
Childs, D. T. D. ;
Krstajic, N. ;
Lu, Z. ;
Matcher, S. J. ;
Livshits, D. ;
Shkolnik, A. ;
Krestnikov, I. ;
Hogg, R. A. .
OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XVI, 2012, 8213