Controlled growth of porous oxygen-deficient NiCo2O4 nanobelts as high-efficiency electrocatalysts for oxygen evolution reaction

被引:22
|
作者
Yao, Shangzhi [1 ,2 ]
Wei, Haoshan [1 ,2 ]
Zhang, Yong [1 ,2 ]
Zhang, Xueru [3 ]
Wang, Yan [1 ,2 ]
Liu, Jiaqin [4 ]
Tan, Hark Hoe [5 ,6 ]
Xie, Ting [2 ]
Wu, Yucheng [1 ,2 ,3 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
[2] Key Lab Adv Funct Mat & Devices Anhui Prov, Hefei 230009, Peoples R China
[3] Hefei Univ Technol, Instrumental Anal Ctr, Hefei 230009, Peoples R China
[4] Hefei Univ Technol, Inst Ind & Equipment Technol, Hefei 230009, Anhui, Peoples R China
[5] China Int S&T Cooperat Base Adv Energy & Environm, Hefei 230009, Anhui, Peoples R China
[6] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 2601, Australia
基金
中国国家自然科学基金;
关键词
ONE-POT SYNTHESIS; BIFUNCTIONAL ELECTROCATALYST; PEROVSKITE ELECTROCATALYST; CARBON NANOTUBES; VACANCIES; NANOSHEETS; REDUCTION; CO3O4; RICH; OER;
D O I
10.1039/d0cy01669a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Owing to their distinctive chemical properties and cost-effectiveness, transition metal oxides (TMOs) promise intriguing potential in electrocatalysis applications. Herein, porous NiCo2O4 nanobelts with controlled oxygen deficiencies were synthesized based on a facile strategy of hydrothermal growth followed by annealing under an inert atmosphere. By finely adjusting annealing temperature and time, concentrations of oxygen deficiencies within the nanobelts could be modulated. The oxygen-deficient NiCo2O4 nanobelts exhibit superior oxygen evolution reaction (OER) performance at a relatively low overpotential which is superior to the values of prepared pristine NiCo2O4 electrocatalysts. In particular, they show excellent stability for 10 h at 10 mA cm(-2). The enhanced OER activity and stability of the catalyst can be ascribed to the abundant oxygen deficiencies as well as porous architecture of the anisotropic nanobelts. This work paves a promising way in fabricating advanced electrocatalysts.
引用
收藏
页码:264 / 271
页数:8
相关论文
共 50 条
  • [1] Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction
    Lv, Xiaoming
    Zhu, Yihua
    Jiang, Hongliang
    Yang, Xiaoling
    Liu, Yanyan
    Su, Yunhe
    Huang, Jianfei
    Yao, Yifan
    Li, Chunzhong
    DALTON TRANSACTIONS, 2015, 44 (09) : 4148 - 4154
  • [2] NiCo2O4 nanoframes with a nanosheet surface as efficient electrocatalysts for the oxygen evolution reaction
    Chen, Zhen
    Zhao, Bo
    He, Ya-Chuan
    Wen, Hao-Ran
    Fu, Xian-Zhu
    Sun, Rong
    Wong, Ching-Ping
    MATERIALS CHEMISTRY FRONTIERS, 2018, 2 (06) : 1155 - 1164
  • [3] Electronic and structural engineering of NiCo2O4/Ti electrocatalysts for efficient oxygen evolution reaction
    Bao, Weiwei
    Xiao, Lei
    Zhang, Junjun
    Jiang, Peng
    Zou, Xiangyu
    Yang, Chunming
    Hao, Xiaoli
    Ai, Taotao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (17) : 10259 - 10267
  • [4] THE ELECTROCATALYTIC ACTIVITY OF NiCo2O4 FOR THE OXYGEN EVOLUTION REACTION
    Peng Li CHENG Jian Min ZHANG Qiu Zhi SHI Chang Chun YANG Department of Chemistry
    Chinese Chemical Letters, 1993, (09) : 821 - 824
  • [5] Oxygen-deficient NiCo2O4 porous nanowire for superior electrosynthesis of ammonia coupling with valorization of ethylene glycol
    Guo, Yiming
    Tong, Yun
    Zhou, Guorong
    He, Jinfeng
    Ren, Xuhui
    Chen, Lu
    Chen, Pengzuo
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [6] OXYGEN EVOLUTION ON NICO2O4 ELECTRODES
    HAENEN, JGD
    VISSCHER, W
    BARENDRECHT, E
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1985, 15 (01) : 29 - 38
  • [7] Oxygen-deficient NiCo2O4 nanowires as the robust cathode for high-performance nickel–zinc batteries
    Peng Zhang
    Shilei Xie
    Penghui Deng
    Simin Huang
    Yangping Li
    Zhimeng Liu
    Yan-Jie Wang
    Xihong Lu
    Journal of Materials Research, 2022, 37 : 2185 - 2194
  • [8] Copper Selenides as High-Efficiency Electrocatalysts for Oxygen Evolution Reaction
    Masud, Jahangir
    Liyanage, Wipula P. R.
    Cao, Xi
    Saxena, Apury
    Nath, Manashi
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (08): : 4075 - 4083
  • [9] MECHANISTIC STUDY OF OXYGEN EVOLUTION ON NICO2O4
    RASIYAH, P
    HIBBERT, DB
    TSEUNG, ACC
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (03) : C136 - C136
  • [10] NiCo2O4 Electrocatalyst Doped with Phosphorus for Improved Oxygen Evolution Reaction
    Li, Shu-Fang
    Li, Xin
    Yan, Dong
    ACS APPLIED NANO MATERIALS, 2024, 7 (11) : 13358 - 13366