Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer:: implications for drug therapy

被引:61
作者
Martínez, C
García-Martín, E
Pizarro, RM
García-Gamito, FJ
Agúndez, JAG
机构
[1] Univ Extremadura, Sch Med, Dept Pharmacol, E-06071 Badajoz, Spain
[2] Univ Extremadura, Sch Biol Sci, Dept Biochem, E-06071 Badajoz, Spain
[3] Univ Extremadura, Sch Med, Dept Surg, E-06071 Badajoz, Spain
关键词
paclitaxel; metabolism; colorectal; cancer; tissue; resistance;
D O I
10.1038/sj.bjc.6600494
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cytochrome P450 3A is a drug-metabolising enzyme activity due to CYP3A4 and CYP3A5 gene products, that is involved in the inactivation of anticancer drugs This study analyses the potential of cytochrome P450 3A enzyme in human colorectal cancer to impact anticancer therapy with drugs that are cytochrome P450 3A substrates Enzyme activity, variability and properties, and the ability to inactivate paclitaxel (taxol) were analysed in human colorectal cancer and healthy colorectal epithelium. Cytochrome P450 3A enzyme activity is present in healthy and tumoral samples, with a nearly 10-fold interindividual variability Nifedipine oxidation activity+/-s.d. for colorectal cancer microsomes was 67.8+/-36.6 pmol min(-1) mg(-1). The K-m of the tumoral enzyme (42+/-8 mum) is similar to that in healthy colorectal epithelium (36+/-8 mum) and the human liver enzyme. Colorectal cancer microsomes metabolised the anticancer drug paclitaxel with a mean activity was 3.1+/-1.2 pmol min(-1) mg(-1). The main metabolic pathway is carried out by cytochrome P450 3A, and it is inhibited by the cytochrome P450 3A-specific inhibitor ketoconazole with a K, value of 31 nm. This study demonstrates the occurrence of cytochrome P450 3A-dependent metabolism in colorectal cancer tissue. The metabolic activity confers to cancer cells the ability to inactivate cytochrome P450 3A substrates and may modulate tumour sensitivity to anticancer drugs. (C) 2002 Cancer Research UK.
引用
收藏
页码:681 / 686
页数:6
相关论文
共 36 条
[1]  
BUTERS JTM, 1994, DRUG METAB DISPOS, V22, P688
[2]   Factors determining cellular mechanisms of resistance to antimitotic drugs [J].
Cabral, F .
DRUG RESISTANCE UPDATES, 2001, 4 (01) :3-8
[3]  
Cavalli SA, 2001, CLIN CHEM, V47, P348
[4]   Human liver microsomal metabolism of paclitaxel and drug interactions [J].
Desai, PB ;
Duan, JZ ;
Zhu, YW ;
Kouzi, S .
EUROPEAN JOURNAL OF DRUG METABOLISM AND PHARMACOKINETICS, 1998, 23 (03) :417-424
[5]   Identification and functional characterization of eight CYP3A4 protein variants [J].
Eiselt, R ;
Domanski, TL ;
Zibat, A ;
Mueller, R ;
Presecan-Siedel, E ;
Hustert, E ;
Zanger, UM ;
Brockmoller, J ;
Klenk, HP ;
Meyer, UA ;
Khan, KK ;
He, YA ;
Halpert, JR ;
Wojnowski, L .
PHARMACOGENETICS, 2001, 11 (05) :447-458
[6]   Effects of a chargrilled meat diet on expression of CYP3A, CYP1A, and P-glycoprotein levels in healthy volunteers [J].
Fontana, RJ ;
Lown, KS ;
Paine, MF ;
Fortlage, L ;
Santella, RM ;
Felton, JS ;
Knize, MG ;
Greenberg, A ;
Watkins, PB .
GASTROENTEROLOGY, 1999, 117 (01) :89-98
[7]   CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity [J].
García-Martín, E ;
Martínez, C ;
Pizarro, RM ;
García-Gamito, FJ ;
Gullsten, H ;
Raunio, H ;
Agúndez, JAG .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2002, 71 (03) :196-204
[8]   AMINOPYRINE N-DEMETHYLASE ACTIVITY IN HUMAN LIVER-MICROSOMES [J].
GARCIAAGUNDEZ, JA ;
LUENGO, A ;
BENITEZ, J .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 1990, 48 (05) :490-495
[9]   Genomic organization of the human CYP3A locus:: identification of a new, inducible CYP3A gene [J].
Gellner, K ;
Eiselt, R ;
Hustert, E ;
Arnold, H ;
Koch, I ;
Haberl, M ;
Deglmann, CJ ;
Burk, O ;
Buntefuss, D ;
Escher, S ;
Bishop, C ;
Koebe, HG ;
Brinkmann, U ;
Klenk, HP ;
Kleine, K ;
Meyer, UA ;
Wojnowski, L .
PHARMACOGENETICS, 2001, 11 (02) :111-121
[10]  
Gibbs MA, 1999, DRUG METAB DISPOS, V27, P180