The mechanism of inhibition of HIV-1 env-mediated cell-cell fusion by recombinant cores of gp41 ectodomain

被引:22
作者
Markosyan, RM
Maj, XW
Cohen, FS
Melikyan, GB
机构
[1] Rush Med Coll, Dept Physiol & Mol Biophys, Chicago, IL 60612 USA
[2] Cornell Univ, Weill Med Coll, Dept Biochem, New York, NY 10021 USA
关键词
membrane fusion; six-helix bundle; fusion intermediates; fluorescence microscopy; thermal unfolding; fusion inhibitory peptides;
D O I
10.1006/viro.2002.1593
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
N36(L6)C34 is a recombinant protein that forms a six-helix bundle with high thermal stability. It consists of the N-terminal heptad-repeat region (N36 peptide) and the C-terminal heptad-repeat region (C34) of HIV-1 gp41, connected by six polar amino acids. The protein inhibits HIV-1 envelope-induced membrane fusion. Whether inhibition occurs while N36(L6)C34 is in its six-helix bundle configuration was investigated. Mutating a critical residue within the N36 region to promote dissociation of C34 from the grooves of the N36 coiled coil reduced bundle stability and increased the inhibition of fusion. In contrast, mutating a key residue within the C34 region to reduce bundle stability decreased inhibitory potency The data provide strong evidence that the proteins inhibit fusion while they expose their C34 segments, rather than as six-helix bundles. Thus, despite high thermal stability of the bundle, the recombinants' less folded structures are present in sufficient concentration to inhibit fusion at physiological temperatures. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:174 / 184
页数:11
相关论文
共 50 条
[1]   Structural basis for paramyxovirus-mediated membrane fusion [J].
Baker, KA ;
Dutch, RE ;
Lamb, RA ;
Jardetzky, TS .
MOLECULAR CELL, 1999, 3 (03) :309-319
[2]   Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41 [J].
Caffrey, M ;
Cai, ML ;
Kaufman, J ;
Stahl, SJ ;
Wingfield, PT ;
Covell, DG ;
Gronenborn, AM ;
Clore, GM .
EMBO JOURNAL, 1998, 17 (16) :4572-4584
[3]   EFFECTS OF AMINO-ACID CHANGES IN THE EXTRACELLULAR DOMAIN OF THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 GP41 ENVELOPE GLYCOPROTEIN [J].
CAO, J ;
BERGERON, L ;
HELSETH, E ;
THALI, M ;
REPKE, H ;
SODROSKI, J .
JOURNAL OF VIROLOGY, 1993, 67 (05) :2747-2755
[4]   HEPTAD REPEAT SEQUENCES ARE LOCATED ADJACENT TO HYDROPHOBIC REGIONS IN SEVERAL TYPES OF VIRUS FUSION GLYCOPROTEINS [J].
CHAMBERS, P ;
PRINGLE, CR ;
EASTON, AJ .
JOURNAL OF GENERAL VIROLOGY, 1990, 71 :3075-3080
[5]   Core structure of gp41 from the HIV envelope glycoprotein [J].
Chan, DC ;
Fass, D ;
Berger, JM ;
Kim, PS .
CELL, 1997, 89 (02) :263-273
[6]   Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target [J].
Chan, DC ;
Chutkowski, CT ;
Kim, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15613-15617
[7]   HIV entry and its inhibition [J].
Chan, DC ;
Kim, PS .
CELL, 1998, 93 (05) :681-684
[8]  
CHEN X, 1995, J APPL POULTRY RES, V4, P69
[9]   DETERMINATION OF HELIX AND BETA-FORM OF PROTEINS IN AQUEOUS-SOLUTION BY CIRCULAR-DICHROISM [J].
CHEN, YH ;
YANG, JT ;
CHAU, KH .
BIOCHEMISTRY, 1974, 13 (16) :3350-3359
[10]   Peptides corresponding to the heptad repeat motifs in the transmembrane protein (gp41) of human immunodeficiency virus type 1 elicit antibodies to receptor-activated conformations of the envelope glycoprotein [J].
De Rosny, E ;
Vassell, R ;
Wingfield, PT ;
Wild, CT ;
Weiss, CD .
JOURNAL OF VIROLOGY, 2001, 75 (18) :8859-8863