Predicting BER value in OFDM-FSO systems using Machine Learning techniques

被引:0
作者
Younes, Ranim [1 ]
Ghosna, Fadi [1 ]
Nassr, Mohammad [1 ]
Anbar, Mohammad [1 ]
Alasadi, Hamid Ali Abed [2 ,3 ]
机构
[1] Tartous Univ, Informat & Commun Technol Engineerin Coll, Commun Technol Engn Dept, Tartus, Syria
[2] Iraq Univ Coll, Commun Engn Dept, 61004, Basra, Iraq
[3] Univ Basrah, Coll Educ Pure Sci, Dept Comp Sci, Basrah, Iraq
来源
OPTICA PURA Y APLICADA | 2022年 / 55卷 / 04期
关键词
Free Space Optics (FSO); OFDM; Optisystem; Machine Learning Algorithms (MLA); Prediction; Regression; Support Vector Regression (SVR); Decision Tree (DT); Random Forest (RF); Bit Error Rate (BER);
D O I
10.7149/OPA.55.4.51114
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, Free Space Optics (FSO) has emerged as new technology for transmission through atmosphere. It is difficult to implement FSO systems under bad weather conditions such as fog and rain and so on. These conditions cause deterioration in the FSO system signal. Thus OFDM technology has been used to enhance system performance and to overcome signal weakness due to weather conditions. Machine Learning Algorithms (MLAs) are good prediction tools which can improveperformances of communication networksin general.In this work, three of machine learning algorithms (namely: Support Vector Regression (SVR), Decision Tree (DT), Random Forest (RF)) have been used to estimate the value of Bit Error Rate (BER). A data set has been obtained from Optisystem v.15 for training and testing MLAs modelsunder different weather conditions (Fog, Rain, Clear). The obtained results show that SVR algorithm cannot be used to predict BER value in the OFDM-FSO system. RF and DT algorithms gave approximate results. RF gave better accuracy where it has the greatest value of determination coefficient (R2) and the smallest value of Mean Square Error (MSE) compared to other algorithms.
引用
收藏
页数:9
相关论文
共 24 条
  • [1] Ajewole B. D., 2019, Journal of Communications, P936
  • [2] Algedir AA, 2020, 2020 IEEE 2ND GLOBAL POWER, ENERGY AND COMMUNICATION CONFERENCE (IEEE GPECOM2020), P308, DOI [10.1109/gpecom49333.2020.9247939, 10.1109/GPECOM49333.2020.9247939]
  • [3] Alkholidi A.G., 2014, CONT ISSUES WIRELESS, DOI 10.5772/58884
  • [4] Low complexity deep learning algorithms for compensating atmospheric turbulence in the free space optical communication system
    Amirabadi, Mohammad Ali
    Kahaei, Mohammad Hossein
    Nezamalhosseni, S. Alireza
    [J]. IET OPTOELECTRONICS, 2022, 16 (03) : 93 - 105
  • [5] [Anonymous], 2007, RECOMMENDATION ITU R
  • [6] Aveta F., 2021, P 2021 IEEE COGN COM, P1, DOI [10.1109/CCAAW50069.2021.9527304, DOI 10.1109/CCAAW50069.2021.9527304]
  • [7] Cognitive Multi-Point Free Space Optical Communication: Real-Time Users Discovery Using Unsupervised Machine Learning
    Aveta, Federica
    Refai, Hazem H.
    Lopresti, Peter G.
    [J]. IEEE ACCESS, 2020, 8 : 207575 - 207588
  • [8] Botchkarev A, 2018, ARXIV PREPRINT ARXIV, V14, P45, DOI DOI 10.28945/4184
  • [9] Free space optic channel monitoring using machine learning
    Esmail, Maged A.
    Saif, Waddah S.
    Ragheb, Amr M.
    Alshebeili, Saleh A.
    [J]. OPTICS EXPRESS, 2021, 29 (07) : 10967 - 10981
  • [10] Fan Yuchuan&Udalcovs, 2022, EUR RESPIR J, V14