Hausdorff dimension of unique beta expansions

被引:39
作者
Kong, Derong [1 ]
Li, Wenxia [2 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
unique beta expansion; Hausdorff dimension; generalized Thue-Morse sequence; admissible block; admissible interval; transcendental number; UNIVOQUE SET; REAL NUMBERS; SEQUENCES;
D O I
10.1088/0951-7715/28/1/187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an integer N >= 2 and a real number beta > 1, let Gamma(beta,N) be the set of all x = Sigma(infinity)(i = 1) d(i)/beta(i) with d(i) is an element of{0, 1, ... , N - 1} for all i >= 1. The infinite sequence (d(i)) is called a beta-expansion of x. Let U-beta,U-N be the set of all x's in Gamma(beta,N) which have unique beta-expansions. We give explicit formula of the Hausdorff dimension of U-beta,U-N for beta in any admissible interval [beta(L), beta(U)], where beta(L) is a purely Parry number while beta(U) is a transcendental number whose quasi-greedy expansion of 1 is related to the classical Thue-Morse sequence. This allows us to calculate the Hausdorff dimension of U-beta,U-N for almost every beta > 1. In particular, this improves the main results of Gabor Kallos (1999, 2001). Moreover, we find that the dimension function f (beta) = dim(H) U-beta,U-N fluctuates frequently for beta is an element of(1, N).
引用
收藏
页码:187 / 209
页数:23
相关论文
共 35 条
  • [1] Allouche J.-P., 1999, Sequences and their applications, V2213, P1, DOI [10.1007/978-1-4471-0551-0_1, DOI 10.1007/978-1-4471-0551-0_1]
  • [2] Univoque numbers and an avatar of Thue-Morse
    Allouche, Jean-Paul
    Frougny, Christiane
    [J]. ACTA ARITHMETICA, 2009, 136 (04) : 319 - 329
  • [3] ALLOUCHE JP, 1983, CR ACAD SCI I-MATH, V296, P159
  • [4] The Komornik-Loreti constant is transcendental
    Allouche, JP
    Cosnard, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (05) : 448 - 449
  • [5] [Anonymous], 2002, Period. Math. Hungar.
  • [6] Unique expansions in integer bases with extended alphabets
    Baatz, Martine
    Komornik, Vilmos
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (3-4): : 251 - 267
  • [7] Baiocchi C., 2007, ARXIV07103001V1
  • [8] Baker S, 2012, INTEGERS, V14, P28
  • [9] TOPOLOGICAL AND ERGODIC PROPERTIES OF SYMMETRIC SUB-SHIFTS
    Barrera, Rafael Alcaraz
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) : 4459 - 4486
  • [10] Random β-expansions
    Dajani, K
    Kraaikamp, C
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 461 - 479