On integer Chebyshev polynomials

被引:15
作者
Habsieger, L [1 ]
Salvy, B [1 ]
机构
[1] INST NATL RECH INFORMAT & AUTOMAT,F-78153 LE CHESNAY,FRANCE
关键词
D O I
10.1090/S0025-5718-97-00829-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
(W)e are concerned with the problem of minimizing the supremum norm on [0, 1] of a nonzero polynomial of degree at most n with integer coefficients. We use the structure of such polynomials to derive an efficient algorithm for computing them. We give a table of these polynomials for degree up to 75 and use a value from this table to answer an open problem due to P. Borwein and T. Erdelyi and improve a lower bound due to Flammang et al.
引用
收藏
页码:763 / 770
页数:8
相关论文
共 8 条
[2]  
BERNARDO EA, 1967, ACT OCT REUN AN MAT, P21
[3]   The integer Chebyshev problem [J].
Borwein, P ;
Erdelyi, T .
MATHEMATICS OF COMPUTATION, 1996, 65 (214) :661-681
[4]   ON THE INTEGER TRANSFINITE DIAMETER OF INTERVALS WITH RATIONAL END-POINTS [J].
FLAMMANG, V .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (03) :779-&
[5]  
FLAMMANG V, 1995, MS95033 U ED
[6]  
KANAMARU N, 1994, J COMPUTATIONAL GEOM, V4, P69
[7]  
Montgomery H.L., 1994, CBMS REGIONAL C SERI, V84
[8]   ON CHEBYSHEV-TYPE INEQUALITIES FOR PRIMES [J].
NAIR, M .
AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (02) :126-129