Analyzing Spatial Heterogeneity in DCE- and DW-MRI Parametric Maps to Optimize Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer

被引:33
作者
Li, Xia [1 ]
Kang, Hakmook [2 ]
Arlinghaus, Lori R. [1 ]
Abramson, Richard G. [1 ,3 ,4 ]
Chakravarthy, A. Bapsi [3 ,5 ]
Abramson, Vandana G. [3 ,6 ]
Farley, Jaime [3 ,6 ]
Sanders, Melinda [3 ,7 ]
Yankeelov, Thomas E. [1 ,3 ,4 ,8 ,9 ,10 ]
机构
[1] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Dept Biostat, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Med Oncol, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Pathol, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[9] Vanderbilt Univ, Dept Phys, Nashville, TN 37232 USA
[10] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
关键词
CONTRAST-ENHANCED MRI; PROGNOSTIC VALUE; DIFFUSION; SURVIVAL; REGISTRATION; ALGORITHM; SIZE; IDENTIFICATION; BIOMARKERS; REGRESSION;
D O I
10.1593/tlo.13748
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The purpose of this study is to investigate the ability of multivariate analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) parametric maps, obtained early in the course of therapy, to predict which patients will achieve pathologic complete response (pCR) at the time of surgery. Thirty-three patients underwent DCE-MRI (to estimate K-trans, v(e), k(ep), and v(p)) and DW-MRI [to estimate the apparent diffusion coefficient (ADC)] at baseline (t(1)) and after the first cycle of neoadjuvant chemotherapy (t(2)). Four analyses were performed and evaluated using receiver-operating characteristic (ROC) analysis to test their ability to predict pCR. First, a region of interest (ROI) level analysis input the mean K-trans, v(e), k(ep), v(p), and ADC into the logistic model. Second, a voxel-based analysis was performed in which a longitudinal registration algorithm aligned serial parameters to a common space for each patient. The voxels with an increase in k(ep), K-trans, and v(p) or a decrease in ADC or v(e) were then detected and input into the regression model. In the third analysis, both the ROI and voxel level data were included in the regression model. In the fourth analysis, the ROI and voxel level data were combined with selected clinical data in the regression model. The overfitting-corrected area under the ROC curve (AUC) with 95% confidence intervals (CIs) was then calculated to evaluate the performance of the four analyses. The combination of k(ep), ADC ROI, and voxel level data achieved the best AUC (95% CI) of 0.87 (0.77-0.98).
引用
收藏
页码:14 / 22
页数:9
相关论文
共 50 条
[31]   Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy [J].
Drisis, Stylianos ;
Metens, Thierry ;
Ignatiadis, Michael ;
Stathopoulos, Konstantinos ;
Chao, Shih-Li ;
Lemort, Marc .
EUROPEAN RADIOLOGY, 2016, 26 (05) :1474-1484
[32]   The value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the prediction of neoadjuvant chemotherapy response in breast cancer: A Meta-Analysis [J].
Dakhil, H. Abed ;
Arian, A. ;
Ahmadinejad, N. ;
Bustan, R. A. ;
Sahib, M. A. ;
Anjomrooz, M. .
INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2024, 22 (03) :749-755
[33]   Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for pretreatment prediction of neoadjuvant chemotherapy response in locally advanced hypopharyngeal cancer [J].
Guo, Wei ;
Zhang, Ya ;
Luo, Dehong ;
Yuan, Huishu .
BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1115)
[34]   Bilateral asymmetry of quantitative parenchymal kinetics at ultrafast DCE-MRI predict response to neoadjuvant chemotherapy in patients with HER2+breast cancer [J].
Ren, Zhen ;
Pineda, Federico D. ;
Howard, Frederick M. ;
Fan, Xiaobing ;
Nanda, Rita ;
Abe, Hiroyuki ;
Kulkarni, Kirti ;
Karczmar, Gregory S. .
MAGNETIC RESONANCE IMAGING, 2023, 104 :9-15
[35]   Predicting response before initiation of neoadjuvant chemotherapy in breast cancer using new methods for the analysis of dynamic contrast enhanced MRI (DCE MRI) data [J].
DeGrandchamp, Joseph B. ;
Whisenant, Jennifer G. ;
Arlinghaus, Lori R. ;
Abramson, V. G. ;
Yankeelov, Thomas E. ;
Cardenas-Rodriguez, Julio .
MEDICAL IMAGING 2016-BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2016, 9788
[36]   Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer [J].
Teruel, Jose R. ;
Heldahl, Mariann G. ;
Goa, Pal E. ;
Pickles, Martin ;
Lundgren, Steinar ;
Bathen, Tone F. ;
Gibbs, Peter .
NMR IN BIOMEDICINE, 2014, 27 (08) :887-896
[37]   Integrated 18F-FDG PET/MRI in breast cancer: early prediction of response to neoadjuvant chemotherapy [J].
Cho, Nariya ;
Im, Seock-Ah ;
Cheon, Gi Jeong ;
Park, In-Ae ;
Lee, Kyung-Hun ;
Kim, Tae-Yong ;
Kim, Young Seon ;
Kwon, Bo Ra ;
Lee, Jung Min ;
Suh, Hoon Young ;
Suh, Koung Jin .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (03) :328-339
[38]   Early Prediction of Response to Neoadjuvant Chemotherapy Using Dynamic Contrast-Enhanced MRI and Ultrasound in Breast Cancer [J].
Kim, Yunju ;
Kim, Sung Hun ;
Song, Byung Joo ;
Kang, Bong Joo ;
Yim, Kwang-il ;
Lee, Ahwon ;
Nam, Yoonho .
KOREAN JOURNAL OF RADIOLOGY, 2018, 19 (04) :682-691
[39]   Contrast-free MRI quantitative parameters for early prediction of pathological response to neoadjuvant chemotherapy in breast cancer [J].
Du, Siyao ;
Gao, Si ;
Zhao, Ruimeng ;
Liu, Hongbo ;
Wang, Yan ;
Qi, Xixun ;
Li, Shu ;
Cao, Jibin ;
Zhang, Lina .
EUROPEAN RADIOLOGY, 2022, 32 (08) :5759-5772
[40]   A nomogram to predict pathologic complete response (pCR) and the value of tumor-infiltrating lymphocytes (TILs) for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients [J].
Hwang, Hye Won ;
Jung, Hera ;
Hyeon, Jiyeon ;
Park, Yeon Hee ;
Ahn, Jin Seok ;
Im, Young-Hyuck ;
Nam, Seok Jin ;
Kim, Seok Won ;
Lee, Jeong Eon ;
Yu, Jong-Han ;
Lee, Se Kyung ;
Choi, Misun ;
Cho, Soo Youn ;
Cho, Eun Yoon .
BREAST CANCER RESEARCH AND TREATMENT, 2019, 173 (02) :255-266