Analyzing Spatial Heterogeneity in DCE- and DW-MRI Parametric Maps to Optimize Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer

被引:33
作者
Li, Xia [1 ]
Kang, Hakmook [2 ]
Arlinghaus, Lori R. [1 ]
Abramson, Richard G. [1 ,3 ,4 ]
Chakravarthy, A. Bapsi [3 ,5 ]
Abramson, Vandana G. [3 ,6 ]
Farley, Jaime [3 ,6 ]
Sanders, Melinda [3 ,7 ]
Yankeelov, Thomas E. [1 ,3 ,4 ,8 ,9 ,10 ]
机构
[1] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Dept Biostat, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Med Oncol, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Pathol, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[9] Vanderbilt Univ, Dept Phys, Nashville, TN 37232 USA
[10] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
来源
TRANSLATIONAL ONCOLOGY | 2014年 / 7卷 / 01期
关键词
CONTRAST-ENHANCED MRI; PROGNOSTIC VALUE; DIFFUSION; SURVIVAL; REGISTRATION; ALGORITHM; SIZE; IDENTIFICATION; BIOMARKERS; REGRESSION;
D O I
10.1593/tlo.13748
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The purpose of this study is to investigate the ability of multivariate analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) parametric maps, obtained early in the course of therapy, to predict which patients will achieve pathologic complete response (pCR) at the time of surgery. Thirty-three patients underwent DCE-MRI (to estimate K-trans, v(e), k(ep), and v(p)) and DW-MRI [to estimate the apparent diffusion coefficient (ADC)] at baseline (t(1)) and after the first cycle of neoadjuvant chemotherapy (t(2)). Four analyses were performed and evaluated using receiver-operating characteristic (ROC) analysis to test their ability to predict pCR. First, a region of interest (ROI) level analysis input the mean K-trans, v(e), k(ep), v(p), and ADC into the logistic model. Second, a voxel-based analysis was performed in which a longitudinal registration algorithm aligned serial parameters to a common space for each patient. The voxels with an increase in k(ep), K-trans, and v(p) or a decrease in ADC or v(e) were then detected and input into the regression model. In the third analysis, both the ROI and voxel level data were included in the regression model. In the fourth analysis, the ROI and voxel level data were combined with selected clinical data in the regression model. The overfitting-corrected area under the ROC curve (AUC) with 95% confidence intervals (CIs) was then calculated to evaluate the performance of the four analyses. The combination of k(ep), ADC ROI, and voxel level data achieved the best AUC (95% CI) of 0.87 (0.77-0.98).
引用
收藏
页码:14 / 22
页数:9
相关论文
共 50 条
  • [11] Breast cancer spatial heterogeneity in near-infrared spectra and the prediction of neoadjuvant chemotherapy response
    Santoro, Ylenia
    Leproux, Anais
    Cerussi, Albert
    Tromberg, Bruce
    Gratton, Enrico
    JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (09)
  • [12] Evaluating treatment response using DW-MRI and DCE-MRI in trastuzumab responsive and resistant HER2-overexpressing human breast cancer xenografts
    Whisenant, Jennifer G.
    Sorace, Anna G.
    McIntyre, J. Oliver
    Kang, Hakmook
    Sanchez, Violeta
    Loveless, Mary E.
    Yankeelov, Thomas E.
    TRANSLATIONAL ONCOLOGY, 2014, 7 (06): : 768 - 779
  • [13] MRI does not predict pathologic complete response after neoadjuvant chemotherapy for breast cancer
    Sener, Stephen F.
    Sargent, Rachel E.
    Lee, Connie
    Manchandia, Tejas
    Le-Tran, Vivian
    Olimpiadi, Yuliya
    Zaremba, Nicole
    Alabd, Andrew
    Nelson, Maria
    Lang, Julie E.
    JOURNAL OF SURGICAL ONCOLOGY, 2019, 120 (06) : 903 - 910
  • [14] Ultrasound-based prediction of pathologic response to neoadjuvant chemotherapy in breast cancer patients
    Baumgartner, Annina
    Tausch, Christoph
    Hosch, Stefanie
    Papassotiropoulos, Barbel
    Varga, Zsuzsanna
    Rageth, Christoph
    Baege, Astrid
    BREAST, 2018, 39 : 19 - 23
  • [15] Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer
    Joo, Sunghoon
    Ko, Eun Sook
    Kwon, Soonhwan
    Jeon, Eunjoo
    Jung, Hyungsik
    Kim, Ji-Yeon
    Chung, Myung Jin
    Im, Young-Hyuck
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [16] Pretreatment DCE-MRI-Based Deep Learning Outperforms Radiomics Analysis in Predicting Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer
    Peng, Yunsong
    Cheng, Ziliang
    Gong, Chang
    Zheng, Chushan
    Zhang, Xiang
    Wu, Zhuo
    Yang, Yaping
    Yang, Xiaodong
    Zheng, Jian
    Shen, Jun
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [17] Preoperative Prediction of Pathologic Response to Neoadjuvant Chemoradiotherapy in Patients With Esophageal Cancer Using 18F-FDG PET/CT and DW-MRI: A Prospective Multicenter Study
    Borggreve, Alicia S.
    Goense, Lucas
    van Rossum, Peter S. N.
    Heethuis, Sophie E.
    van Hillegersberg, Richard
    Lagendijk, Jan J. W.
    Lam, Marnix G. E. H.
    van Lier, Astrid L. H. M. W.
    Mook, Stella
    Ruurda, Jelle P.
    van Vulpen, Marco
    Voncken, Francine E. M.
    Aleman, Berthe M. P.
    Bartels-Rutten, Annemarieke
    Ma, Jingfei
    Fang, Penny
    Musall, Benjamin C.
    Lin, Steven H.
    Meijer, Gert J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 106 (05): : 998 - 1009
  • [18] Treatment response evaluation by MRI in breast cancer patients receiving neoadjuvant chemotherapy: there is more than just pathologic complete response prediction
    Lobbes, M. B. I.
    BREAST CANCER RESEARCH AND TREATMENT, 2012, 136 (01) : 313 - 314
  • [19] Does Bladder Cancer Subtype Influence Pathologic Complete Response (pCR) and Pelvic Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) Response Evaluation After Neoadjuvant Chemotherapy? Pathological
    Kim, Ji Min
    Choi, Euno
    Sung, Sun Hee
    Jo, Jungmin
    Lee, Dong-Hyeon
    Park, Sanghui
    CLINICAL GENITOURINARY CANCER, 2024, 22 (02) : 224 - 236
  • [20] Machine Learning Models and Multiparametric Magnetic Resonance Imaging for the Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer
    Herrero Vicent, Carmen
    Tudela, Xavier
    Moreno Ruiz, Paula
    Pedralva, Victor
    Jimenez Pastor, Ana
    Ahicart, Daniel
    Rubio Novella, Silvia
    Meneu, Isabel
    Montes Albuixech, Angela
    Angel Santamaria, Miguel
    Fonfria, Maria
    Fuster-Matanzo, Almudena
    Olmos Anton, Santiago
    Martinez de Duenas, Eduardo
    CANCERS, 2022, 14 (14)