Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer

被引:277
作者
Parmar, Chintan [1 ,2 ,3 ]
Grossmann, Patrick [1 ,2 ,4 ]
Rietveld, Derek [5 ]
Rietbergen, Michelle M. [6 ]
Lambin, Philippe [3 ]
Aerts, Hugo J. W. L. [1 ,2 ,4 ]
机构
[1] Harvard Univ, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiat Oncol,Med Sch, Boston, MA 02115 USA
[2] Harvard Univ, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiol,Med Sch, Boston, MA 02115 USA
[3] Maastricht Univ, Res Inst GROW, Radiat Oncol MAASTRO, NL-6200 MD Maastricht, Netherlands
[4] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[5] Vrije Univ Amsterdam, Med Ctr, Dept Radiat Oncol, Amsterdam, Netherlands
[6] Vrije Univ Amsterdam, Med Ctr, Dept Otolaryngol Head & Neck Surg, Amsterdam, Netherlands
基金
欧盟地平线“2020”;
关键词
quantitative imaging; radiology; radiomics; cancer; machine learning; computational science; CELL LUNG-CANCER; TEXTURAL FEATURES; HETEROGENEITY; GLIOBLASTOMA; VARIABILITY; PREDICTION; SURVIVAL; IMAGES; INFORMATION; PARAMETERS;
D O I
10.3389/fonc.2015.00272
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: "Radiomics" extracts and mines a large number of medical imaging features in a non-invasive and cost-effective way. The underlying assumption of radiomics is that these imaging features quantify phenotypic characteristics of an entire tumor. In order to enhance applicability of radiomics in clinical oncology, highly accurate and reliable machine-learning approaches are required. In this radiomic study, 13 feature selection methods and 11 machine learning classification methods were evaluated in terms of their performance and stability for predicting overall survival in head and neck cancer patients. Methods: Two independent head and neck cancer cohorts were investigated. Training cohort HN1 consisted of 101 head and neck cancer patients. Cohort HN2 (n = 95) was used for validation. A total of 440 radiomic features were extracted from the segmented tumor regions in CT images. Feature selection and classification methods were compared using an unbiased evaluation framework. Results: We observed that the three feature selection methods minimum redundancy maximum relevance (AUG = 0.69, Stability = 0.66), mutual information feature selection (AUG = 0.66, Stability = 0.69), and conditional infomax feature extraction (AUG = 0.68, Stability = 0.7) had high prognostic performance and stability. The three classifiers BY (AUG = 0.67, RSD = 11.28), RF (AUG = 0.61, RSD = 7.36), and NN (AUG = 0.62, RSD = 10.52) also showed high prognostic performance and stability. Analysis investigating performance variability indicated that the choice of classification method is the major factor driving the performance variation (29.02% of total variance). Conclusion: Our study identified prognostic and reliable machine-learning methods for the prediction of overall survival of head and neck cancer patients. Identification of optimal machine-learning methods for radiomics-based prognostic analyses could broaden the scope of radiomics in precision oncology and cancer care.
引用
收藏
页数:10
相关论文
共 43 条
[31]   Measuring Computed Tomography Scanner Variability of Radiomics Features [J].
Mackin, Dennis ;
Fave, Xenia ;
Zhang, Lifei ;
Fried, David ;
Yang, Jinzhong ;
Taylor, Brian ;
Rodriguez-Rivera, Edgardo ;
Dodge, Cristina ;
Jones, Aaron Kyle ;
Court, Laurence .
INVESTIGATIVE RADIOLOGY, 2015, 50 (11) :757-765
[32]  
Mohri M., 2018, Foundations of Machine Learning
[33]  
Ng CKY, 2012, EXPERT REV ANTICANC, V12, P1021, DOI [10.1586/ERA.12.85, 10.1586/era.12.85]
[34]   Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients [J].
Nicolasjilwan, Manal ;
Hu, Ying ;
Yan, Chunhua ;
Meerzaman, Daoud ;
Holder, Chad A. ;
Gutman, David ;
Jain, Rajan ;
Colen, Rivka ;
Rubin, Daniel L. ;
Zinn, Pascal O. ;
Hwang, Scott N. ;
Raghavan, Prashant ;
Hammoud, Dima A. ;
Scarpace, Lisa M. ;
Mikkelsen, Tom ;
Chen, James ;
Gevaert, Olivier ;
Buetow, Kenneth ;
Freymann, John ;
Kirby, Justin ;
Flanders, Adam E. ;
Wintermark, Max .
JOURNAL OF NEURORADIOLOGY, 2015, 42 (04) :212-221
[35]   A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: A step toward individualized care and shared decision making [J].
Oberije, Cary ;
Nalbantov, Georgi ;
Dekker, Andre ;
Boersma, Liesbeth ;
Borger, Jacques ;
Reymen, Bart ;
van Baardwijk, Angela ;
Wanders, Rinus ;
De Ruysscher, Dirk ;
Steyerberg, Ewout ;
Dingemans, Anne-Marie ;
Lambin, Philippe .
RADIOTHERAPY AND ONCOLOGY, 2014, 112 (01) :37-43
[36]   Machine Learning methods for Quantitative Radiomic Biomarkers [J].
Parmar, Chintan ;
Grossmann, Patrick ;
Bussink, Johan ;
Lambin, Philippe ;
Aerts, Hugo J. W. L. .
SCIENTIFIC REPORTS, 2015, 5
[37]   Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer [J].
Parmar, Chintan ;
Leijenaar, Ralph T. H. ;
Grossmann, Patrick ;
Velazquez, Emmanuel Rios ;
Bussink, Johan ;
Rietveld, Derek ;
Rietbergen, Michelle M. ;
Haibe-Kains, Benjamin ;
Lambin, Philippe ;
Aerts, Hugo J. W. L. .
SCIENTIFIC REPORTS, 2015, 5
[38]   Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation [J].
Parmar, Chintan ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph ;
Jermoumi, Mohammed ;
Carvalho, Sara ;
Mak, Raymond H. ;
Mitra, Sushmita ;
Shankar, B. Uma ;
Kikinis, Ron ;
Haibe-Kains, Benjamin ;
Lambin, Philippe ;
Aerts, Hugo J. W. L. .
PLOS ONE, 2014, 9 (07)
[39]   Prognostic value of pre-treatment DCE-MRI parameters in predicting disease free and overall survival for breast cancer patients undergoing neoadjuvant chemotherapy [J].
Pickles, Martin D. ;
Manton, David J. ;
Lowry, Martin ;
Turnbull, Lindsay W. .
EUROPEAN JOURNAL OF RADIOLOGY, 2009, 71 (03) :498-505
[40]   Decoding global gene expression programs in liver cancer by noninvasive imaging [J].
Segal, Eran ;
Sirlin, Claude B. ;
Ooi, Clara ;
Adler, Adam S. ;
Gollub, Jeremy ;
Chen, Xin ;
Chan, Bryan K. ;
Matcuk, George R. ;
Barry, Christopher T. ;
Chang, Howard Y. ;
Kuo, Michael D. .
NATURE BIOTECHNOLOGY, 2007, 25 (06) :675-680