Markerless Gait Analysis Vision System for Real-time Gait Monitoring

被引:0
|
作者
Andre, Joao [1 ]
Lopes, Joao [1 ]
Palermo, Manuel [1 ]
Goncalves, Diogo [1 ]
Matias, Ana [2 ]
Pereira, Fatima [2 ]
Afonso, Jose [1 ]
Seabra, Eurico [1 ]
Cerqueira, Joao [3 ]
Santos, Cristina [1 ]
机构
[1] Univ Minho, Braga, Portugal
[2] Hosp Braga, Braga, Portugal
[3] 2CA Braga, Braga, Portugal
来源
2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020) | 2020年
关键词
gait; rehabilitation; smart walker; vision;
D O I
10.1109/icarsc49921.2020.9096121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
On this paper a vision-based contact- and markerless method for gait evaluation is proposed, and validated in different experimental setups against commercial motion capture systems (Vicon) and inertial gait analysis tools (GaitShoes). While the development goal is its integration on the ASBGo Smart Walker platform, only an inexpensive depth camera is required. It is shown to have reasonable results when computing gait metrics in real time, in different experimental setups, from different walker types, vision hardware and walking scenarios. Performance is evaluated through RMSD values for several gait metrics. Results illustrate that the proposed approach can be a valuable non-invasive, contactless and low cost alternative to gait analysis systems used in clinical rehabilitation environments.
引用
收藏
页码:269 / 274
页数:6
相关论文
共 50 条
  • [1] Real-time Gait Monitoring System for Consumer Stroke Prediction Service
    Park, Se Jin
    Hussain, Iqram
    Hong, Seunghee
    Kim, Damee
    Park, Hongkyu
    Benjamin, Ho Chee Meng
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2020, : 768 - 771
  • [2] Real-time feedback as a method of monitoring walking velocity during gait analysis
    Ridge, Sarah Trager
    Richards, James G.
    GAIT & POSTURE, 2011, 34 (04) : 564 - 566
  • [3] A Real-Time Intelligent Biofeedback Gait Patterns Analysis System for Knee Injured Subjects
    Wulandari, Putri
    Senanayake, S. M. N. Arosha
    Malik, Owais Ahmed
    Intelligent Information and Database Systems, ACIIDS 2016, Pt II, 2016, 9622 : 703 - 712
  • [4] Real-Time Gait Cycle Parameter Recognition Using a Wearable Accelerometry System
    Yang, Che-Chang
    Hsu, Yeh-Liang
    Shih, Kao-Shang
    Lu, Jun-Ming
    SENSORS, 2011, 11 (08) : 7314 - 7326
  • [5] A System for Real-Time Feedback to Improve Gait and Posture in Parkinson's Disease
    Jellish, Jeremy
    Abbas, James J.
    Ingalls, Todd M.
    Mahant, Padma
    Samanta, Johan
    Ospina, Maria Cristina
    Krishnamurthi, Narayanan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (06) : 1809 - 1819
  • [6] GAD: A Real-Time Gait Anomaly Detection System with Online Adaptive Learning
    Lee, Ming-Chang
    Lin, Jia-Chun
    Katsikas, Sokratis
    ICT SYSTEMS SECURITY AND PRIVACY PROTECTION, SEC 2024, 2024, 710 : 308 - 322
  • [7] A cost effective smart insole system for real time gait analysis
    Antoniou, Nikos
    Hadjiantonis, Antonis
    Kyriacou, Costas
    Konstantinidis, Andreas
    2023 IEEE SENSORS, 2023,
  • [8] Measuring Gait Quality in Parkinson's Disease through Real-Time Gait Phase Recognition
    Mileti, Ilaria
    Germanotta, Marco
    Di Sipio, Enrica
    Imbimbo, Isabella
    Pacilli, Alessandra
    Erra, Carmen
    Petracca, Martina
    Rossi, Stefano
    Del Prete, Zaccaria
    Bentivoglio, Anna Rita
    Padua, Luca
    Palermo, Eduardo
    SENSORS, 2018, 18 (03):
  • [9] Real-Time Detection of Gait Events by Recurrent Neural Networks
    Wang, Fu-Cheng
    Li, You-Chi
    Kuo, Tien-Yun
    Chen, Szu-Fu
    Lin, Chin-Hsien
    IEEE ACCESS, 2021, 9 : 134849 - 134857
  • [10] Real-time feedback to improve gait in children with cerebral palsy
    van Gelder, Linda
    Booth, Adam T. C.
    van de Port, Ingrid
    Buizer, Annemieke I.
    Harlaar, Jaap
    van der Krogt, Marjolein M.
    GAIT & POSTURE, 2017, 52 : 76 - 82