Product Matrix Processes as Limits of Random Plane Partitions

被引:7
作者
Borodin, Alexei [1 ,2 ]
Gorin, Vadim [1 ,2 ]
Strahov, Eugene [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[3] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
关键词
SCHUR PROCESS; REPRESENTATION; POLYNOMIALS;
D O I
10.1093/imrn/rny297
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a random process with discrete time formed by squared singular values of products of truncations of Haar-distributed unitary matrices. We show that this process can be understood as a scaling limit of the Schur process, which gives determinantal formulas for (dynamical) correlation functions and a contour integral representation for the correlation kernel. The relation with the Schur processes implies that the continuous limit of marginals for q-distributed plane partitions coincides with the joint law of squared singular values for products of truncations of Haar-distributed random unitary matrices. We provide structural reasons for this coincidence that may also extend to other classes of random matrices.
引用
收藏
页码:6713 / 6768
页数:56
相关论文
共 45 条
[1]   RANDOM MATRIX MINOR PROCESSES RELATED TO PERCOLATION THEORY [J].
Adler, Mark ;
Van Moerbeke, Pierre ;
Wang, Dong .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2013, 2 (04)
[2]  
Akemann G., 2001, ANN H POINCARE, V119, P256
[3]   Universal microscopic correlation functions for products of truncated unitary matrices [J].
Akemann, Gernot ;
Burda, Zdzislaw ;
Kieburg, Mario ;
Nagao, Taro .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (25)
[4]   Products of rectangular random matrices: Singular values and progressive scattering [J].
Akemann, Gernot ;
Ipsen, Jesper R. ;
Kieburg, Mario .
PHYSICAL REVIEW E, 2013, 88 (05)
[5]   Singular value correlation functions for products of Wishart random matrices [J].
Akemann, Gernot ;
Kieburg, Mario ;
Wei, Lu .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)
[6]   Universal microscopic correlation functions for products of independent Ginibre matrices [J].
Akemann, Gernot ;
Burda, Zdzislaw .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (46)
[7]  
[Anonymous], 1996, AM MATH SOC TRANSL
[8]  
[Anonymous], 1995, SYMMETRIC FUNCTIONS
[9]  
Baryshnikov Y, 2018, PROBAB THEORY RELAT, V19, P2599
[10]  
Beals R., 2013, Notices of the AMS, V60, P866