On positive quaternionic Kahler manifolds with certain symmetry rank

被引:3
作者
Kim, Jin Hong [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
CURVED MANIFOLDS; CLASSIFICATION;
D O I
10.1007/s11856-009-0069-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a positive quaternionic Kahler manifold of real dimension 4m. In this paper we show that if the symmetry rank of M is greater than or equal to [m/2] + 3, then M is isometric to HP (m) or Gr2(C (m+2)). This is sharp and optimal, and will complete the classification result of positive quaternionic Kahler manifolds equipped with symmetry. The main idea is to use the connectedness theorem for quaternionic Kahler manifolds with a group action and the induction arguments on the dimension of the manifold.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 23 条
[1]  
ALEKSEEVSKII DV, 1968, FUNCTIONAL ANAL APPL, V2, P106, DOI DOI 10.1007/BF01075944
[2]  
BATTAGLIA F, 1997, J LOND MATH SOC, V59, P345
[3]  
Bielawski R, 1999, MATH ANN, V314, P505, DOI 10.1007/s002080050305
[4]  
Cheeger J., 1975, COMPARISON THEOREMS
[5]   Quaternionic Kahler manifolds of cohomogeneity one [J].
Dancer, A ;
Swann, A .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (05) :541-570
[6]  
Fang FQ, 2005, COMMUN ANAL GEOM, V13, P671
[7]   Homeomorphism classification of positively curved manifolds with almost maximal symmetry rank [J].
Fang, FQ ;
Rong, XC .
MATHEMATISCHE ANNALEN, 2005, 332 (01) :81-101
[8]  
Fang FQ, 2004, J REINE ANGEW MATH, V576, P149
[9]  
Fang F, 2008, MATH RES LETT, V15, P641