In vitro and in vivo studies on as- extruded Mg-5.25 wt.% Zn-0.6wt.% Ca alloy as biodegradable metal

被引:27
作者
Gu, Xuenan [1 ,2 ]
Wang, Fan [1 ]
Xie, Xinhui [3 ]
Zheng, Mingyi [4 ]
Li, Ping [1 ,2 ]
Zheng, Yufeng [5 ]
Qin, Ling [3 ]
Fan, Yubo [1 ,2 ,6 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Beijing 100083, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 102402, Peoples R China
[3] Chinese Univ Hong Kong, Dept Orthopaed & Traumatol, Hong Kong, Hong Kong, Peoples R China
[4] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
[5] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[6] Natl Res Ctr Rehabil Tech Aids, Beijing 100176, Peoples R China
基金
中国国家自然科学基金;
关键词
magnesium alloy; corrosion; biocompatibility; bone; biomaterial; MAGNESIUM ALLOYS; DEGRADATION BEHAVIOR; MG-ZN; MECHANICAL-PROPERTIES; CORROSION BEHAVIOR; IMPLANTS; BONE; BIOCOMPATIBILITY; MICROSTRUCTURE; HYDROGEN;
D O I
10.1007/s40843-017-9205-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnesium alloys have shown prospective applications as a new biodegradable metal within bone. To garantee the longterm biocompatibility, a Mg-Zn-Ca alloy, composing of essential elements for human, was prepared and its feasibility for orthopedic applications was investigated. The in vitro and in vivo corrosion of Mg-Zn-Ca alloy as well as the biocompatibility were studied. The in vitro corrosion tests in five kinds of physiological solutions showed that the corrosion rates and corrosion morphologies of the alloy were strongly influenced by the solution used. The addition of serum in Hank's and MEM significantly slowed down the corrosion rate and improved the corrosion uniformity of the alloy. The corrosion rate decreased with increasing serum concentration. The alloy showed the slowest corrosion rate as well as homogeneous corrosion morphology in MEM+10% FBS. Both the indirect and direct cell experiments indicated good cytocompatibility of the extruded Mg-Zn-Ca alloy. In vivo, we observed a gradual degradation process from the surface of extruded Mg-Zn-Ca alloy and only 40% in volume of implant was left after 4 weeks implantation in medullary cavities of mice. The micro-CT and histological analyses revealed its good biocompatibility with peri-implant new bone formation and increasing cortical bone thickness with increasing implantation period. This study showed that the extruded MgZn-Ca alloy provided sufficient biocompatibility for orthopedic application, though the in vivo corrosion rate should be further reduced for clinical use.
引用
收藏
页码:619 / 628
页数:10
相关论文
共 44 条
[1]   Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for magnesium alloys WZ21 and ZX50 [J].
Amerstorfer, F. ;
Fischerauer, S. F. ;
Fischer, L. ;
Eichler, J. ;
Draxler, J. ;
Zitek, A. ;
Meischel, M. ;
Martinelli, E. ;
Kraus, T. ;
Hann, S. ;
Stanzl-Tschegg, S. E. ;
Uggowitzer, P. J. ;
Loffler, J. F. ;
Weinberg, A. M. ;
Prohaska, T. .
ACTA BIOMATERIALIA, 2016, 42 :440-450
[2]   Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model [J].
Angrisani, N. ;
Reifenrath, J. ;
Zimmermann, F. ;
Eifler, R. ;
Meyer-Lindenberg, A. ;
Vano-Herrera, K. ;
Vogt, C. .
ACTA BIOMATERIALIA, 2016, 44 :355-365
[3]   Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation [J].
Antunes, Renato Altobelli ;
Lopes de Oliveira, Mara Cristina .
ACTA BIOMATERIALIA, 2012, 8 (03) :937-962
[4]   Microstructure and bio-corrosion behavior of Mg-Zn and Mg-Zn-Ca alloys for biomedical applications [J].
Bakhsheshi-Rad, H. R. ;
Hamzah, E. ;
Fereidouni-Lotfabadi, A. ;
Daroonparvar, M. ;
Yajid, M. A. M. ;
Mezbahul-Islam, M. ;
Kasiri-Asgarani, M. ;
Medraj, M. .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2014, 65 (12) :1178-1187
[5]   Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys [J].
Cai, Shuhua ;
Lei, Ting ;
Li, Nianfeng ;
Feng, Fangfang .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2012, 32 (08) :2570-2577
[6]   Metallic implant biomaterials [J].
Chen, Qizhi ;
Thouas, George A. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2015, 87 :1-57
[7]   Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials [J].
Ding, Wenjiang .
REGENERATIVE BIOMATERIALS, 2016, 3 (02) :79-86
[8]   Fundamentals and advances in magnesium alloy corrosion [J].
Esmaily, M. ;
Svensson, J. E. ;
Fajardo, S. ;
Birbilis, N. ;
Frankel, G. S. ;
Virtanen, S. ;
Arrabal, R. ;
Thomas, S. ;
Johansson, L. G. .
PROGRESS IN MATERIALS SCIENCE, 2017, 89 :92-193
[9]   Improved cytotoxicity testing of magnesium materials [J].
Fischer, Janine ;
Proefrock, Daniel ;
Hort, Norbert ;
Willumeit, Regine ;
Feyerabend, Frank .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2011, 176 (11) :830-834
[10]   Reaction of bone nanostructure to a biodegrading Magnesium WZ21 implant - A scanning small-angle X-ray scattering time study [J].
Gruenewald, T. A. ;
Ogier, A. ;
Akbarzadeh, J. ;
Meischel, M. ;
Peterlik, H. ;
Stanzl-Tschegg, S. ;
Loeffler, J. F. ;
Weinberg, A. M. ;
Lichtenegger, H. C. .
ACTA BIOMATERIALIA, 2016, 31 :448-457