Computational Framework for Generating Synthetic Signal Peptides

被引:2
作者
Johnsten, Tom [1 ]
Prakash, Aishwarya [2 ,3 ]
Daly, Grant T. [2 ]
Benton, Ryan G. [1 ]
Clark, Tristan [1 ]
机构
[1] Univ S Alabama, Comp Sci, Mobile, AL 36688 USA
[2] Univ S Alabama, Dept Pharmacol, Mobile, AL USA
[3] Univ S Alabama, Mitchell Canc Inst, Mobile, AL USA
来源
13TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, BCB 2022 | 2022年
关键词
Signal peptides; Targeting Sequences; Eukaryotic; Mitochondria; Multi-Layer Vector Space Model; Amino Acids; Building Blocks;
D O I
10.1145/3535508.3545530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have developed a computational framework for constructing synthetic signal peptides from a base set of protein sequences. A large number of structured "building blocks", represented as m-step ordered pairs of amino acids, are extracted from the base sequences. Using a straightforward procedure, the building blocks enable the construction of a diverse set of synthetic signal peptides and targeting sequences that have the potential for industrial and therapeutic purposes. We have validated the proposed framework using several state-of-the-art sequence prediction platforms such as Signal-BLAST, SignalP-5.0, MULocDeep, and DeepMito. Experimental results show the computational framework can successfully generate synthetic signal peptides and targeting sequences and transform non-signaling sequences into synthetic signal peptides.
引用
收藏
页数:7
相关论文
共 15 条
[1]  
Akkoc Can, 2011, Proceedings of the ISCA 3rd International Conference on Bioinformatics and Computational Biology, P160
[2]  
[Anonymous], SignalP-5.0 Signal peptide and cleavage sites in gram+, gramand eukaryotic amino acid sequences
[3]   SignalP 5.0 improves signal peptide predictions using deep neural networks [J].
Armenteros, Jose Juan Almagro ;
Tsirigos, Konstantinos D. ;
Sonderby, Casper Kaae ;
Petersen, Thomas Nordahl ;
Winther, Ole ;
Brunak, Soren ;
von Heijne, Gunnar ;
Nielsen, Henrik .
NATURE BIOTECHNOLOGY, 2019, 37 (04) :420-+
[4]  
Bay S.D., 1999, Proc of the Fifth ACM SIGKDD Intl Conf on Knowledge Discovery and Data Mining, P302, DOI DOI 10.1145/312129.312263
[5]  
Dong G., 2013, CONTRAST DATA MINING
[6]   High-performance signal peptide prediction based on sequence alignment techniques [J].
Frank, Karl ;
Sippl, Manfred J. .
BIOINFORMATICS, 2008, 24 (19) :2172-2176
[7]   MULocDeep: A deep-learning framework for protein subcellular and suborganellar localization prediction with residue-level interpretation [J].
Jiang, Yuexu ;
Wang, Duolin ;
Yao, Yifu ;
Eubel, Holger ;
Kunzler, Patrick ;
Moller, Ian Max ;
Xu, Dong .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 (19) :4825-4839
[8]   Exploiting multi-layered vector spaces for signal peptide detection [J].
Johnsten, Tom ;
Fain, Laura ;
Fain, Leanna ;
Benton, Ryan G. ;
Butler, Ethan ;
Pannell, Lewis ;
Tan, Ming .
INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2015, 13 (02) :141-157
[9]   Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson's disease models [J].
Kang, Young Cheol ;
Son, Minuk ;
Kang, Sora ;
Im, Suyeol ;
Piao, Ying ;
Lim, Kwang Suk ;
Song, Min-Young ;
Park, Kang-Sik ;
Kim, Yong-Hee ;
Pak, Youngmi Kim .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2018, 50 :1-13
[10]   A comprehensive review of signal peptides: Structure, roles, and applications [J].
Owji, Hajar ;
Nezafat, Navid ;
Negandaripour, Manica ;
Hajiebrahimi, Ali ;
Ghasemi, Younes .
EUROPEAN JOURNAL OF CELL BIOLOGY, 2018, 97 (06) :422-441